Structural and electrochemical studies of Scheelite type BiVO4 nanoparticles: synthesis by simple hydrothermal method

  • R. Packiaraj
  • P. Devendran
  • S. Asath Bahadur
  • N. NallamuthuEmail author


Monoclinic scheelite type Bismuth Vanadate (BiVO4) nanoparticles (NPs) were prepared by simple hydrothermal method. The prepared BiVO4 particles were characterized by various analytical studies such as Structural, optical, elemental and morphological analysis. The monoclinic scheelite type BiVO4 was confirmed using X-ray diffraction. Optical band gap was calculated 2.27 eV at the absorbance edge λ = 545 nm using DRS UV spectrum. The elemental composition and functional group were confirmed the BiVO4 through EDX and FTIR respectively. Rod shaped morphology was observed by electron microscopes like SEM and TEM. The prepared BiVO4 NPS modified electrode was subjected with electrochemical studies like cyclic voltmetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge–discharge (GCD) analysis. The rod shaped BiVO4 NPS modified electrode obtained maximum capacitance value of 1166 Fg−1.



Author R. P is gratefully acknowledged to IRC, Kalasalingam Academy of Research and Education (KARE) for given grateful financial support in the form of University Research Fellowship (URF) scheme. Authors are grateful to IRC, KARE, India for providing research facilities.


  1. 1.
    V. Ruiz, C. Blanco, M. Granda, R. Santamaria, Enhanced life-cycle supercapacitors by thermal treatment of mesophase-derived activated carbons. Electrochim. Acta 54, 305–310 (2008)CrossRefGoogle Scholar
  2. 2.
    L. Ran, C. Seung, B.L. Sang, Poly (3, 4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor. Nanotechnology 19, 215–710 (2008)Google Scholar
  3. 3.
    X. Hu, Z. Deng, J. Suo, Z. Pan, A high rate, high capacity and long life (LiMn2O4 + AC)/Li4Ti5O12 hybrid battery–supercapacitor. J. Power Sources 187, 635–639 (2009)CrossRefGoogle Scholar
  4. 4.
    C. Portet, P.L. Taberna, P. Simon, E. Flahaut, C. Laberty-Robert, High power density electrodes for Carbon supercapacitor applications. Electrochim. Acta 50, 4174–4181 (2005)CrossRefGoogle Scholar
  5. 5.
    M. Jayalakshmi, K. Balasubramanian, Simple capacitors to supercapacitors—an overview. Int. J. Electrochem. 3, 1196–1217 (2008)Google Scholar
  6. 6.
    X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6, 232–236 (2011)CrossRefGoogle Scholar
  7. 7.
    P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)CrossRefGoogle Scholar
  8. 8.
    Z.S. Iro, C. Subramani, S.S. Dash, A brief review on electrode materials for supercapacitor. Int. J. Electrochem. Sci. 11, 10628–10643 (2016)CrossRefGoogle Scholar
  9. 9.
    B. Rajagopalan, J. Chung, Reduced chemically graphene modified graphene oxide for supercapacitor electrode. Nanoscale Res. Lett. 9, 535 (2014)CrossRefGoogle Scholar
  10. 10.
    D.W. Choi, G.E. Blomgren, P.N. Kumta, Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv. Mater. 18, 1178–1182 (2006)CrossRefGoogle Scholar
  11. 11.
    C.C. Hu, K.H. Chang, M.C. Lin, Y.T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 6, 2690–2695 (2006)CrossRefGoogle Scholar
  12. 12.
    X. Zhang, W. Shi, J. Zhu, D.J. Kharistal, W. Zhao, B.S. Lalia, H.H. Hng, Q. Yan, High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO nanobelts and single-walled carbon nanotubes. ACS Nano 5, 2013–2019 (2011)CrossRefGoogle Scholar
  13. 13.
    X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 12, 1690–1696 (2012)CrossRefGoogle Scholar
  14. 14.
    X.Y. Feng, C. Shen, Y. Yu, S.Q. Wei, C.H. Chen, Synthesis and electrochemical properties of sticktight- like and nanosheet Co3O4 particles. J. Power Sources 230, 59–65 (2013)CrossRefGoogle Scholar
  15. 15.
    Z. Sun, F. Huang, Y. Sui, F. Wei, J. Qi, Q. Meng, H. Hu, Y. He, Cobalt oxide composites derived from zeolitic imidazolate framework for high-performance supercapacitor electrode. J. Mater. Sci.: Mater. Electron. 28, 14019–14025 (2017)Google Scholar
  16. 16.
    S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene-MnO2 nanocomposites for supercapacitors. ACS Nano 4, 2822–2830 (2010)CrossRefGoogle Scholar
  17. 17.
    R.K. Selvan, I. Perelshtein, N. Perkas, A. Gedanken, Synthesis ofhexagonal-shaped SnO2 nanocrystals and SnO2@C nanocomposites for electrochemical redox supercapacitors. J. Phys. Chem. C 112, 1825–1830 (2008)CrossRefGoogle Scholar
  18. 18.
    G. Anandha Babu, G. Ravi, T. Mahalingam, M. Kumaresavanji, Y. Hayakawa, Influence of microwave power on the preparation of NiO nanoflakes for enhanced magnetic and supercapacitor applications. Dalton Trans. 44, 4485–4497 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Gao, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. He, Facile synthesis of nickel metal–organic framework derived hexagonal flaky NiO for supercapacitors. J. Mater. Sci.: Mater. Electron. 29, 2477–2483 (2018)Google Scholar
  20. 20.
    X. Li, J. Shao, J. Li, L. Zhang, Q. Qu, H. Zheng, Ordered mesoporous MoO2 as a high performance anode material for aqueous supercapacitor. J. Power Sources 237, 80–83 (2013)CrossRefGoogle Scholar
  21. 21.
    S.D. Perera, B. Patel, J. Bonso, M. Grunewald, J.P. Ferraris, K.J. Balkus, Vanadium oxide nanotube spherical clusters prepared on carbon fabrics for energy storage applications. ACS Appl. Mater. Interfaces 3, 4512–4517 (2011)CrossRefGoogle Scholar
  22. 22.
    M. Zhu, Y. Wang, D. Meng, X. Qin, G. Diao, Hydrothermal synthesis of hematite nanoparticles and their electrochemical properties. J. Phys. Chem. C 116, 16276–16285 (2012)CrossRefGoogle Scholar
  23. 23.
    D. Liu, X. Wang, X. Wang, W. Tian, J. Liu, C. Zhi, D. He, Y. Bando, D. Golberg, Ultrathin nanoporous Fe3O4–carbon nanosheets with enhanced supercapacitor performance. J. Mater. Chem. A 1, 1952–1955 (2013)CrossRefGoogle Scholar
  24. 24.
    V.D. Nithya, R. Kalai Selvan, D. Kalpana, L. Vasylechko, C. Sanjeeviraja, Synthesis of Bi2WO6 nanoparticles and its electrochemical properties in different electrolytes for pseudocapacitor electrodes. Electrochim. Acta 109, 720–731 (2013)CrossRefGoogle Scholar
  25. 25.
    V.D. Nithya, L. Vasylechko, Phase and shape dependent electrochemical properties of BiPO4 by PVP assisted hydrothermal method for pseduocapacitors. RSC Adv. 4 65814–65194 (2014)Google Scholar
  26. 26.
    S. Boukhalfa, K. Evanoff, G. Yushin, Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. Energy Environ. Sci. 5, 6872–6879 (2012)CrossRefGoogle Scholar
  27. 27.
    Y. Yan, B. Li, W. Guo, H. Pang, H. Xue, Vanadium based materials as electrode materials for high performance supercapacitors. J. Power Sources 329, 148–169 (2016)CrossRefGoogle Scholar
  28. 28.
    D.T. Nguyen, S.-S. Hong, Synthesis of BiVO4 nanoparticles using microwave process and their photocatalytic activity under visible light irradiation. J. Nanosci. Nanotechnol. 17, 2690–2694 (2017)CrossRefGoogle Scholar
  29. 29.
    V. Dhanasekaran, S. Anandhavelu, E.K. Polychroniadis, T. Mahalingam, Microstructural properties evaluation of Fe2O3 nanostructures. Mater. Lett. 126, 288–290 (2014)CrossRefGoogle Scholar
  30. 30.
    V. Dhanasekaran, N. Soundaram, S.-I. Kim, R. Chandramohan, S. Mantha, S. Saravanakumar, T. Mahalingamd, Optical, electrical and microstructural studies of monoclinic CuO nanostructures synthesized by a sol–gel route. New J. Chem. 38(6), 2327–2333 (2014)CrossRefGoogle Scholar
  31. 31.
    A.T. Ravichandran, R. Karthick, K. Ravichandran, D. Ravinder, R. Chandramohan, Revealing the influence of the Bi dopant on the structural, photoluminescence and antibacterial properties of ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 29(4), 2784–2790 (2018)CrossRefGoogle Scholar
  32. 32.
    G. Muruganandam, N. Mala, S. Pandiarajan, N. Srinivasan, R. Ramya, E. Sindhuja, K. Ravichandran, Synergistic effects of Mg and F doping on the photocatalytic efficiency of ZnO nanoparticles towards MB and MG dye degradation. J. Mater. Sci. Mater. Electron. 28(23), 18228–18235 (2017)CrossRefGoogle Scholar
  33. 33.
    K. Kaviyarasu, P.P. Murmu, J. Kennedy, F.T. Thema, D. Letsholathebe, L. Kotsedi, M. Maaza, Structural, optical and magnetic investigation of Gd implanted CeO2 nanocrystals. Nucl. Instrum. Methods Phys. Res. Sect. B 409, 147–152 (2017)CrossRefGoogle Scholar
  34. 34.
    K. Kaviyarasu, L. Kotsedia, A. Simo, X. Fukua, G.T. Mola, J. Kennedy, M. Maazaa, Photocatalytic activity of ZrO2 doped lead dioxide nanocomposites: investigation of structural and optical microscopy of RhB organic dye. Appl. Surf. Sci. 421, 234–239 (2017)CrossRefGoogle Scholar
  35. 35.
    A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 121, 11459–11467 (1999)CrossRefGoogle Scholar
  36. 36.
    Z. Khan, S. Bhattu, S. Haram, D. Khushalani, SWCNT/BiVO4 composites as anode materials for supercapacitor application. RSC Adv. 4, 7378–7381 (2014)Google Scholar
  37. 37.
    S.S. Patil, D.P. Dubal, M.S. Tamboli, J.D. Ambekar, S.S. Kolekar, P. Gomez-Romero, B.B. Kale, D.R. Patil, Ag:BiVO4 dendritic hybrid-architectures for high energy density symmetric supercapacitor. J. Mater. Chem. A 4, 7580–7584 (2016)CrossRefGoogle Scholar
  38. 38.
    A.R. Lim, S.H. Choh, M.S. Jang, Prominent ferroelastic domain walls in BiVO4 crystal. J. Phys.: Condens. Matter 7, 309–7323 (1995)Google Scholar
  39. 39.
    K. Sayama, A. Nomura, Z. Zou, R. Abe, Y. Abe, H. Arakawa, Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light. Chem. Commun. 23, 2908–1909 (2003)CrossRefGoogle Scholar
  40. 40.
    R. Strobel, H.J. Metz, S.E. Pratsinis, Brilliant yellow, transparent pure, and SiO2-coated BiVO4 nanoparticles made in flames. Chem. Mater. 20, 6346–6351 (2008)CrossRefGoogle Scholar
  41. 41.
    M.C. Neves, T. Trindade, Chemical bath deposition of BiVO4. Thin Solid Films 406, 93–97 (2002)CrossRefGoogle Scholar
  42. 42.
    M. Gotic, S. Music, M. Ivanda, M. Soufek, S. Popovic, Synthesis and characterization of bismuth (III) vanadate. J. Mol. Struct. 744, 535–540 (2005)CrossRefGoogle Scholar
  43. 43.
    H.Q. Jiang, H. Endo, H. Natori, M. Nagai, K. Kobayashi, Fabrication and photoactivities of spherical-shaped BiVO4 photocatalysts through solution combustion synthesis method. J. Eur. Ceram. Soc. 28, 2955–2962 (2008)CrossRefGoogle Scholar
  44. 44.
    X. Zhang, Z. Ai, F. Jia, L. Zhang, X. Fan, Z. Zou, Synthesis of BiVO4 via oxidant peroxo-method: insights into the photocatalytic performance and degradation mechanism of pollutants Mater. Chem. Phys. 103, 162–167 (2007)Google Scholar
  45. 45.
    X. Zhang, Z.H. Ai, F.L. Jia, L.Z. Zhang, X.X. Fan, Z.G. Zou, Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases. Mater. Chem. Phys. 103, 162–168 (2007)CrossRefGoogle Scholar
  46. 46.
    H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65 (1969)CrossRefGoogle Scholar
  47. 47.
    A.W. Sleight, H.-Y. Chen, A. Ferretti, Crystal growth and structure of BiVO4. Mater. Res. Bull. 14, 1571–1581 (1979)CrossRefGoogle Scholar
  48. 48.
    N. Iqbal, I. Khan, Z.H. Yamani, A. Qurashi, Sonochemical assisted solvothermal synthesis of gallium oxynitride nanosheets and their solar-driven photoelectrochemical water-splitting applications. Sci. Rep. 6, 32319 (2016)CrossRefGoogle Scholar
  49. 49.
    Z. Wang, J. Xuan, B. Liu, J. He, Photocatalytic degradation of C.I. reactive blue 19 by using novel nano BiVO4-coated cotton fabric. J. Ind. Text. 44(6), 868–883 (2015)CrossRefGoogle Scholar
  50. 50.
    U.M. García-Pérez, S. Sepúlveda-Guzmán, A. Martínez-de La, Cruz, Nanostructured BiVO4 photocatalysts synthesized via a polymer-assisted coprecipitation method and their photocatalytic properties under visible-light irradiation. Solid State Sci. 14, 293–298 (2012)CrossRefGoogle Scholar
  51. 51.
    A. Kumar, G. Sharma, M. Naushad, A. Kumar, S. Kalia, C. Guo, G.T. Mola, Facile hetero-assembly of superparamagnetic Fe3O4/BiVO4 stacked on biochar for solar photo-degradation of methyl paraben and hexavalent chromium and pesticide removal from soil. J. Photochem. Photobiol. A 337, 118–131 (2017)CrossRefGoogle Scholar
  52. 52.
    Y. Zhai, Y. Yin, X. Liu, Y. Li, J. Wang, C. Liu, G. Bian, Novel magnetically separable BiVO4/Fe3O4 photocatalyst: synthesis and photocatalytic performance under visible-light irradiation. Mater. Res. Bull. 89, 297–306 (2017)CrossRefGoogle Scholar
  53. 53.
    B. Sarma, A.L. Jurovitzki, Y.R. Smith, S.K. Mohanty, M. Misra, Redox-induced enhancement in interfacial capacitance of the titania nanotube/bismuth oxide composite electrode. ACS Appl. Mater. Interfaces 5, 1688–1697 (2013)CrossRefGoogle Scholar
  54. 54.
    S.S. Patil, D.P. Dubal, V.G. Deonikar, M.S. Tamboli, J.D. Ambekar, P. Gomez-Romero, S.S. Kolekar, B.B. Kale, D.R. Patil, Fern-like rGO/BiVO4 hybrid nanostructures for high-energy symmetric supercapacitor. ACS Appl. Mater. Interfaces 46, 31602–31610 (2016)CrossRefGoogle Scholar
  55. 55.
    S.K. Meher, P. Justin, G.R. Rao, Tuning of capacitance behavior of NiO using anionic, cationic, and nonionic surfactants by hydrothermal synthesis. J. Phys. Chem. C, 114, 5203–5210 (2010)CrossRefGoogle Scholar
  56. 56.
    L.-Q. Mai, F. Yang, Y.-L. Zhao, X. Xu, L. Xu, Y.-Z. Luo, Hierarchical MnMoO(4)/CoMoO(4) heterostructured nanowires with enhanced supercapacitor performance. Nat. Commun. 2, 381 (2011)CrossRefGoogle Scholar
  57. 57.
    L.-B. Kong, J.-W. Lang, M. Liu, Y.-C. Luo, L. Kang, Facile approach to prepare loosepacked cobalt hydroxide nano-flakes materials for electrochemical capacitors. J. Power Sources 194, 1194–1201 (2009)CrossRefGoogle Scholar
  58. 58.
    L. Chen, Z. Song, G. Liu, C. Yu, J. Qin, L. Ma, F. Tian, W. Liu, Synthesis and electrochemical performance of polyaniline–MnO2 nanowire composites for supercapacitors. J. Phys. Chem. Solids 74, 360–365 (2013)CrossRefGoogle Scholar
  59. 59.
    S.X. Deng, D. Sun, C.H. Wu, H. Wang, J.B. Liu, Y.X. Sun, H. Yan, Electrochimica acta synthesis and electrochemical properties of MnO2 nanorods/graphene composites for supercapacitor applications. Electrochim. Acta 111, 707–712 (2013)CrossRefGoogle Scholar
  60. 60.
    J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi, F. Wei, Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 22, 2632–2641 (2012)CrossRefGoogle Scholar
  61. 61.
    V.D. Nithya, B. Hanitha, S. Surendran, D. Kalpana, R.K. Selvan, Effect of pH on the sonochemical synthesis of BiPO4 nanostructures and its electrochemical properties for pseudocapacitors. Ultrason. Sonochem. 22, 300–310 (2015)CrossRefGoogle Scholar
  62. 62.
    T.P. Gujar, V.R. Shinde, C.D. Lokhande, S.H. Han, Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors. J. Power Sources 161, 1479–1485 (2006)CrossRefGoogle Scholar
  63. 63.
    C.D. Lokhande, T.P. Gujar, V.R. Shinde, R.S. Mane, S.H. Han, Ectrochemical supercapacitor application of perovskite thin films. Electrochem. Commun. 9, 1805–1809 (2007)CrossRefGoogle Scholar
  64. 64.
    H.W. Wang, Z.A. Hu, Y.Q. Chang, Y.L. Chen, Z.Q. Lei, Z.Y. Zhang, Y.Y. Yang, Facile solvothermal synthesis of a graphene nanosheete bismuth oxide composite and its electrochemical characteristics. Electrochim. Acta 55, 8974–8980 (2010)CrossRefGoogle Scholar
  65. 65.
    A.A. Ensafi, N. Ahmadi, B. Razaei, Electrochemical preparation of CuBi2O4 nanoparticles on nanoporous stainless steel as a binder-free supercapacitor electrode. J. Alloys Compd. 652, 39–47 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Multifunctional Materials Laboratory, Department of Physics, International Research CentreKalasalingam Academy of Research and Higher EducationKrishnankoilIndia

Personalised recommendations