Annealing and biasing effects on the structural and optical properties of PECVD-grown TiO2 films from TTIP/O2 plasma

  • D. LiEmail author
  • S. Dai
  • A. Goullet
  • M. Carette
  • A. Granier
  • J. P. Landesman


This work presents a study of the structural, morphological, and optical properties of titanium dioxide thin films prepared via plasma enhanced chemical vapour deposition at the floating potential (Vf) or substrate bias (Vb) of − 10 and − 50 V, after being submitted to annealing processes varying the temperature from 450 to 850 °C. By tuning the annealing temperature and substrate bias voltage respectively, which could be helpful for the explanation about the thermal effect and the influence of ion bombardment on TiO2 films obtained from low-temperature plasma deposition. The results have shown that the TiO2 thin films grown at Vf and − 10 V persist in the anatase phase even after annealing at 850 °C. The phase transformation from anatase to rutile occurred in the case of − 50 V, and the crystallization enhancement has been identified as the annealing temperature increased. From scanning electron microscopy measurements, the formation of gradient columnar morphology was also perceived in the cases of Vf and − 10 V, with increasing annealing temperature at 850 °C, these structures disappear transforming into homogeneous columns with larger size at Vf and granular structure at − 10 V. In the case of − 50 V, a well-organized columnar morphology has been found in the as-deposited film, and it also can be modified into granular structure with the post-annealing effect at 850 °C but without thickness reduction. Spectroscopic ellipsometry (SE) study was used to determine the effect of annealing temperature on the thickness and on the optical constant of TiO2 thin films. SE shows that the band gap of TiO2 thin films was found to decrease when the annealing temperature increases. Meanwhile, the annealing temperature of 450 °C leads to a decrease of refractive indices of the films grown at Vf and − 10 V, but has no effect on the film of − 50 V. Then further increase of annealing temperature at 850 °C, an improvement of refractive indices can be identified for all the films deposited with various bias voltages.



This work is supported by the National Natural Science Foundation of China (51602279), Jiangsu Planned Projects for Postdoctoral Research Funds (1601048B), Jiangsu Overseas Visiting Scholar Program for University Prominent Young & Middle-aged Teachers and Presidents, Program for High-end Talents in Yangzhou University.


  1. 1.
    P. Amassian, L. Desjardins, Martinu, Study of TiO2 film growth mechanisms in low-pressure plasma by in situ real-time spectroscopic ellipsometry. Thin Solid Films 447–448, 40 (2004)CrossRefGoogle Scholar
  2. 2.
    R. Mechiakh, F. Meriche, R. Kremer, R. Bensaha, B. Boudine, A. Boudrioua, TiO2 thin films prepared by sol-gel method for waveguiding applications: correlation between the structural and optical properties. Opt. Mater. 30, 645 (2007)CrossRefGoogle Scholar
  3. 3.
    J. Singh, S.A. Khan, J. Shah, R.K. Kotnala, S. Mohapatra, Nanostructured TiO2 thin films prepared by RF magnetron sputtering for photocatalytic applications. Appl. Surf. Sci. 422, 953–961 (2017)CrossRefGoogle Scholar
  4. 4.
    G.D. Rajmohan, F.Z. Huang, R. d’Agostino, J. Plessis, X.J. Dai, Low temperature reactively sputtered crystalline TiO2 thin film as effective blocking layer for perovskite solar cells. Thin Solid Films 636, 307–313 (2017)CrossRefGoogle Scholar
  5. 5.
    T. Dhandayuthapani, R. Sivakumar, R. Ilangovan, C. Gopalakrishnan, C. Sanjeeviraja, A. Sivanantharaja, High coloration efficiency, high reversibility and fast switching response of nebulized spray deposited anatase TiO2 thin films for electrochromic applications. Electrochim. Acta 255, 358–368 (2017)CrossRefGoogle Scholar
  6. 6.
    F. Pan, H. Lin, H. Zhai, Z. Miao, Y. Zhang, K. Xu, B. Guan, H. Huang, H. Zhang, Pd-doped TiO2 film sensors prepared by premixed stagnation flames for CO and NH3 gas sensing, Sens. Actuators B 261, 451–459 (2018)CrossRefGoogle Scholar
  7. 7.
    U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003)CrossRefGoogle Scholar
  8. 8.
    L.J. Meng, V. Teixeira, H.N. Cui, F. Placido, Z. Xu, M.P. dos Santos, A study of the optical properties of titanium oxide films prepared by dc reactive magnetron sputtering. Appl. Surf. Sci. 252, 7970 (2006)CrossRefGoogle Scholar
  9. 9.
    E.D. Palik, Handbook of Optical Constants of Solids, vol. II (Academic Press, San Diego, 1991), p. 795Google Scholar
  10. 10.
    M.V. Sofianou, V. Psycharis, N. Boukos, T. Vaimakis, J. Yu, R. Dillert, D. Bahnemann, C. Trapalis, Tuning the photocatalytic selectivity of TiO2 anatase nanoplates by altering the exposed crystal facets content., Appl. Catal. B 142–143, 761 (2013)CrossRefGoogle Scholar
  11. 11.
    J.Y. Zhang, I.W. Boyd, B.J. O’Sullivan, P.K. Hurley, P.V. Kelly, J.P. Senateur, Nanocrystalline TiO2 films studied by optical, XRD and FTIR spectroscopy. J. Non-Cryst. Solids 303, 134 (2002)CrossRefGoogle Scholar
  12. 12.
    D.A.H. Hanaor, C.C. Sorrell, Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855 (2011)CrossRefGoogle Scholar
  13. 13.
    T.B. Ghosh, S. Dhabal, A.K. Datta, On crystallite size dependence of phase stability of nanocrystalline TiO2. J. Appl. Phys. 94, 4577 (2003)CrossRefGoogle Scholar
  14. 14.
    M. Hirano, N. Nakahara, K. Ota, O. Tanaike, N. Inagaki, Photoactivity and phase stability of ZrO2-doped anatase-type TiO2 directly formed as nanometer-sized particles by hydrolysis under hydrothermal conditions. J. Solid State Chem. 170, 39 (2003)CrossRefGoogle Scholar
  15. 15.
    G. Li, L. Li, J. Boerio-Goates, B.F. Woodfield, High purity anatase TiO2 nanocrystals: near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. J. Am. Chem. Soc. 127, 8659 (2005)CrossRefGoogle Scholar
  16. 16.
    J. Kim, K.C. Song, S. Foncillas, S. Pratsinis, Dopants for synthesis of stable bimodally porous titania. J. Eur. Ceram. Soc. 21, 2863 (2001)CrossRefGoogle Scholar
  17. 17.
    V.G. Sevastyanov, E.P. Simonenko, N.P. Simonenko, A.S. Mokrushin, V.A. Nikolaev, N.T. Kuznetsov, Sol-gel made titanium dioxide nanostructured thin films as gas-sensing materials for the detection of oxygen. Mendeleev Commun. 28, 164–166 (2018)CrossRefGoogle Scholar
  18. 18.
    A.E.J. González, S.G. Santiago, Structural and optoelectronic characterization of TiO2 films prepared using the sol–gel technique. Semicond. Sci. Technol. 22, 709–716 (2007)CrossRefGoogle Scholar
  19. 19.
    O. Wiranwetchayan, S. Promnopas, T. Thongtem, A. Chaipanich, S. Thongtem, Effect of alcohol solvents on TiO2 films prepared by sol–gel method. Surf. Coat. Technol. 326, 310–315 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Horprathum, P. Eiamchai, P. Chindaudom, N. Nuntawong, V. Patthanasettakul, P. Limnonthakul, P. Limsuwan, Characterization of inhomogeneity in TiO2 thin films prepared by pulsed dc reactive magnetron sputtering. Thin Solid Films 520, 272–279 (2011)CrossRefGoogle Scholar
  21. 21.
    N. Martin, D. Baretti, C. Rousselot, J.-Y. Rauch, The effect of bias power on some properties of titanium and titanium oxide films prepared by R.F. magnetron sputtering. Surf. Coat. Technol. 107, 172–182 (1998)CrossRefGoogle Scholar
  22. 22.
    H. Yao, M. Chiu, W. Wu, F. Shieu, Influence of RF bias on the characteristics of TiO2 thin films prepared by DC sputtering. J. Electrochem. Soc. 153, F237–F243 (2006)CrossRefGoogle Scholar
  23. 23.
    D. Li, A. Goullet, M. Carette, A. Granier, J.P. Landesman, Effect of growth interruptions on TiO2 films deposited by plasma enhanced chemical vapor deposition. Mater. Chem. Phys. 182, 409–417 (2016)CrossRefGoogle Scholar
  24. 24.
    L. Martinu, D. Poitras, Plasma deposition of optical films and coatings: a review. J. Vac. Sci. Technol. A 18, 2619–2645 (2000)CrossRefGoogle Scholar
  25. 25.
    A. Borras, J. Cotrino, A.R. Gonzalez-Elipe, Type of plasmas and microstructures of TiO2 thin films prepared by plasma enhanced chemical vapor deposition. J. Electrochem. Soc. 154, P152-P157 (2007)CrossRefGoogle Scholar
  26. 26.
    M. Nakamura, D. Korzec, T. Aoki, J. Engemann, Y. Hatanaka, Characterization of TiOx film prepared by plasma enhanced chemical vapor deposition using a multi-jet hollow cathode plasma source., Appl. Surf. Sci. 175–176, 697–702 (2001)CrossRefGoogle Scholar
  27. 27.
    A. Sobczyk-Guzenda, M. Gazicki-Lipman, H. Szymanowski, J. Kowalski, P. Wojciechowski, T. Halamus, A. Tracz, Characterization of thin TiO2 films prepared by plasma enhanced chemical vapour deposition for optical and photocatalytic applications. Thin Solid Films 517, 5409–5414 (2009)CrossRefGoogle Scholar
  28. 28.
    D. Li, M. Carette, A. Granier, J.P. Landesman, A. Goullet, Effect of ion bombardment on the structural and optical properties of TiO2 thin films deposited from oxygen/titanium tetraisopropoxide inductively coupled plasma. Thin Solid Films 589, 783–791 (2015)CrossRefGoogle Scholar
  29. 29.
    A. Dussan, A. Bohórquez, H.P. Quiroz, Effect of annealing process in TiO2 thin films: structural, morphological, and optical properties. Appl. Surf. Sci. 424, 111–114 (2017)CrossRefGoogle Scholar
  30. 30.
    J.B. Naceur, M. Gaidi, F. Bousbih, R. Mechiakh, R. Chtourou, Annealing effects on microstructural and optical properties of nanostructured-TiO2 thin films prepared by sol-gel technique. Curr. Appl. Phys. 12, 422–428 (2012)CrossRefGoogle Scholar
  31. 31.
    B. Drevillon, J. Perrin, R. Marbit, A. Violet, J.L. Dalby, Fast polarization modulated ellipsometer using a microprocessor system for digital Fourier analysis. Rev. Sci. Instrum. 53, 969 (1982)CrossRefGoogle Scholar
  32. 32.
    B. Santara, P.K. Giri, K. Imakita, M. Fujii, Microscopic origin of lattice contraction and expansion in undoped rutile TiO2 nanostructures. J. Phys. D 47, 215302 (2014)CrossRefGoogle Scholar
  33. 33.
    A. Dorian, H. Hanaor, C.C. Sorrell, Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855–874 (2011)CrossRefGoogle Scholar
  34. 34.
    C.L. Wang, W.S. Hwang, H.L. Ch, H.J. Lin, H.H. Ko, M.C. Wang, Kinetics of anatase transition to rutile TiO2 from titanium dioxide precursor powders synthesized by a sol-gel process. Ceram. Int. 42, 13136–13143 (2016)CrossRefGoogle Scholar
  35. 35.
    D. Reyes-Coronado, G. Rodríguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, G. Oskam, Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19, 145605 (2008)CrossRefGoogle Scholar
  36. 36.
    D. Li, A. Goullet, M. Carette, A. Granier, Y. Zhang, J.P. Landesman, Structural and optical properties of RF-biased PECVD TiO2 thin films deposited in an O2/TTIP helicon reactor. Vacuum 131, 231–239 (2016)CrossRefGoogle Scholar
  37. 37.
    D. Li, S. Elisabeth, A. Granier, M. Carette, A. Goullet, J.P. Landesman, Structural and optical properties of PECVD TiO2–SiO2 mixed oxide films for optical applications. Plasma Process. Polym. 13, 918–928 (2016)CrossRefGoogle Scholar
  38. 38.
    X. Ding, X. Liu, Correlation between anatase-to-rutile transformation and grain growth in nanocrystalline titania powders. J. Mater. Res. 13, 2556 (1998)CrossRefGoogle Scholar
  39. 39.
    J.H. Anderson Jr., G.A. Parks, Electrical conductivity of silica gel in the presence of adsorbed water. J. Phys. Chem. 72, 3662–3668 (1968)CrossRefGoogle Scholar
  40. 40.
    G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts (Wiley, Chichester, 2001)Google Scholar
  41. 41.
    C. Pecharroman, F. Gracia, J.P. Holgado, M. Ocana, A.R. Gonzalez-Elipe, J. Bassas, J. Santiso, A. Figueras, Determination of texture by infrared spectroscopy in titanium oxide–anatase thin films. J. Appl. Phys. 93, 4634–4645 (2003)CrossRefGoogle Scholar
  42. 42.
    Y. Leprince-Wang, D. Souche, K. Yu-Zhang, S. Fisson, G. Vuye, J. Rivory, Relations between the optical properties and the microstructure of TiO2 thin films prepared by ion-assisted deposition. Thin Solid Films 359, 171 (2000)CrossRefGoogle Scholar
  43. 43.
    H. Long, G. Yang, A. Chen, Y. Li, P. Lu, Growth and characteristics of laser deposited anatase and rutile TiO2 films on Si substrates. Thin Solid Films 517, 745–749 (2008)CrossRefGoogle Scholar
  44. 44.
    A. Sonnenfeld, P. Rudolf, von Rohr, Effect of substrate temperature and RF biasing on the optical properties of titania-like thin films obtained by plasma enhanced chemical vapor deposition. Plasma Process. Polym. 6, S722 (2009)CrossRefGoogle Scholar
  45. 45.
    L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain, S. Tanemura, Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering., Appl. Surf. Sci. 212–213, 255–263 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Mechanical EngineeringYangzhou UniversityYangzhouChina
  2. 2.Institut des Matériaux Jean Rouxel (IMN)UMR CNRS 6502NantesFrance
  3. 3.Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN)UMR CNRS 8520Villeneuve d’AscqFrance
  4. 4.Institut de Physique de RennesUMR CNRS 6251RennesFrance

Personalised recommendations