Investigation of magnetic response of charge ordering in half-doped La0.5Ca0.5MnO3 manganite

  • H. O. Wang
  • P. Zhao
  • J. J. Sun
  • W. S. TanEmail author
  • K. P. Su
  • S. Huang
  • D. X. HuoEmail author


La0.5Ca0.5MnO3 (LCMO) polycrystalline sample was synthesized by the solid-state reaction method. The result of X-ray diffraction shows that the LCMO is single phase. We have studied the magnetic response of charge-ordered (CO) state in the LCMO manganite. The magnetic hysteresis loop at 100 K displays an interesting butterfly-type structure, which indicates the existence of CO anti-ferromagnetic (AFM) structure in LCMO. The temperature-dependent magnetization measurements show a paramagnetic (PM) to ferromagnetic (FM) transition at Curie temperature (TC ≈ 130 K) and a FM to AFM transition at Néel temperature (TN ≈ 50 K), measured under different fields of 100, 500 and 5000 Oe. Moreover, there is an interesting intercross in zero-field cooling (ZFC) and filed-cooling (FC) measurements, i.e., an intercross of the ZFC/FC curves in the CO LCMO manganite. These present magnetism measurements are discussed and possible explanations are provided by the existence of CO AFM state.



We would like to thank the colleagues at the Beijing Synchrotron Radiation Facility (BSRF) and Shanghai Synchrotron Radiation Facility (SSRF) for support. This work has been supported by the Science and Technology Project of Zhejiang Province (Grant No. 2018C37080) and the National Natural Science Foundation of China (Grant Nos. 11604067, U1332106, 11574066, 51601049, 11704091).


  1. 1.
    P. Amirzadeh, H. Ahmadvand, P. Kameli, B. Aslibeiki, H. Salamati, A.G. Gamzatov, A.M. Aliev, I.K. Kamilov, Phase separation and direct magnetocaloric effect in La0.5Ca0.5MnO3 manganite. J. Appl. Phys. 113, 123904 (2013)CrossRefGoogle Scholar
  2. 2.
    J. Jeon, H.S. Alagoz, J. Jung, K.H. Chow, Surface inhomogeneities and the electronic phase separated states in thin films of La0.35Pr0.35Ca0.3MnO3. J. Appl. Phys. 115, 233907 (2014)CrossRefGoogle Scholar
  3. 3.
    M. Quintero, S. Passanante, I. Iruzun, D. Goijman, G. Polla, Grain size modification in the magnetocaloric and non-magnetocaloric transitions in La0.5Ca0.5MnO3 probed by direct and indirect methods. Appl. Phys. Lett. 105, 152411 (2014)CrossRefGoogle Scholar
  4. 4.
    Y. Tokura, Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 69, 797 (2006)CrossRefGoogle Scholar
  5. 5.
    S.S. Kekade, R.S. Devan, A.V. Deshmukh, D.M. Phase, R.J. Choudhary, S.I. Patil, Electron transport behavior and charge ordering phenomena in La0.5Ca0.5MnO3. J. Alloys Compd. 682, 447 (2016)CrossRefGoogle Scholar
  6. 6.
    Y. Takamura, F. Yang, N. Kemik, E. Arenholz, M.D. Biegalski, H.M. Christen, Competing interactions in ferromagnetic/antiferromagnetic perovskite superlattices. Phys. Rev. B 80, 180417 (2009). R)CrossRefGoogle Scholar
  7. 7.
    S.J. May, P.J. Ryan, J.L. Robertson, J.-W. Kim, T.S. Santos, E. Karapetrova, J.L. Zarestky, X. Zhai, S.G.E. Te Velthuis, J.N. Eckstein, S.D. Bader, A. Bhattacharya, Enhaced ordering temperatures in antiferromagnetic manganite superlattices. Nat. Mater. 8, 892 (2009)CrossRefGoogle Scholar
  8. 8.
    Z. Jirak, E. Hadova, O. Kaman, K. Knizek, M. Marysko, E. Pollert, M. Dlouha, S. Vratislav, Ferromagnetism versus charge ordering in the Pr0.5Ca0.5MnO3 and La0.5Ca0.5MnO3 nanoparticles. Phys. Rev. B 81, 024403 (2010)CrossRefGoogle Scholar
  9. 9.
    H.O. Wang, H. Liu, M.X. Cao, X.Y. Wang, W.S. Tan, F. Xu, Q.J. Jia, C.L. Ma, Enhanced magnetoresistance at wide temperature range in [Pr0.7Sr0.3MnO3/La0.5Ca0.5MnO3]20 superlattice on (001) MgO. J. Mater. Sci.: Mater. Electron. 28, 6233 (2017)Google Scholar
  10. 10.
    I.O. Troyanchuk, S.V. Trukhanov, E.F. Shapovalova, V.A. Khomchenko, M. Tovar, H. Szymczak, The influence of oxygen vacancies on the magnetic state of La0.50D0.50MnO3–γ (D = Ca, Sr) manganites. JETP 96, 1055–1064 (2003)CrossRefGoogle Scholar
  11. 11.
    S.V. Trukhanov, I.O. Troyanchuk, H. Szymczak, K. Bärner, Phase transitions in the La0.50Ca0.50MnO3–γ manganites. Phys. Stat. Solidi (b) 229, 1417–1426 (2002)CrossRefGoogle Scholar
  12. 12.
    S.V. Trukhanov, N.V. Kasper, I.O. Troyanchuk, M. Tovar, H. Szymczak, K. Bärner, Evolution of magnetic state in the La1–xCaxMnO3–γ (x = 0.30, 0.50) manganites depending on the oxygen content. J. Solid State Chem. 169, 85–95 (2002)CrossRefGoogle Scholar
  13. 13.
    T. Sarkar, A.K. Raychaudhuri, T. Chatterji, Sized arrest of the room temperature crystallographic structure in nanoparticles La0.5Ca0.5MnO3. Appl. Phys. Lett. 92, 123104 (2008)CrossRefGoogle Scholar
  14. 14.
    T. Sarkar, B. Ghosh, A.K. Raychaudhuri, T. Chatterji, Crystal structure and physical properties of half doped manganite nanocrystals of less than 100-nm size. Phys. Rev. B 77, 235112 (2008)CrossRefGoogle Scholar
  15. 15.
    S. Liang, J.R. Sun, J. Wang, B.G. Shen, Magnetic and conductive dead layer at the La0.67Ca0.33MnO3-SrTiO3:Nb interface. Appl. Phys. Lett. 95, 182509 (2009)CrossRefGoogle Scholar
  16. 16.
    H. Wang, W. Yang, K. Su, D. Huo, W. Tan, Exchange-bias field induced by surface inhomogeneities in ferromagnetic/charge-ordered bilayer structure. J. Alloys Compd. 648, 966 (2015)CrossRefGoogle Scholar
  17. 17.
    W.B. Mi, J.J. Shen, E.Y. Jiang, H.L. Bai, Microstructure, magnetic and magneto-transport properties of polycrystalline FeO films. Thin Solid Films 55, 1919 (2007)Google Scholar
  18. 18.
    K.L. Lopez-Maldonado, P. de la Presa, M.A. de la Rubia, P. Crespo, J. De Frutos, A. Hernando, J.A.M. Aquino, J.T.E. Galindo, Effects of grain boundary width and crystallite size on conductivity and magnetic properties of magnetite nanoparticles. J. Nanopart. Res. 16(7), 1 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Materials PhysicsHangzhou Dianzi UniversityHangzhouChina
  2. 2.All-Solid-State Energy Storage Materials and Devices Key Laboratory of Hunan Province, College of Information and Electronic EngineeringHunan City UniversityYiyangChina
  3. 3.Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, Department of Applied PhysicsNanjing University of Science and TechnologyNanjingChina

Personalised recommendations