High quality transparent conductive hydrogenated AZO with embedded Ag films deposited on PEN flexible substrate

  • Genghua Yan
  • Linquan Zhang
  • Ruijiang HongEmail author


The hydrogenated aluminum-doped zinc oxide (HAZO)/Ag/HAZO (HAH) tri-layer structure transparent conductive films (TCFs) have been deposited on polyethylene naphthalate (PEN) flexible substrates via DC magnetron sputtering process and high quality TCFs have been obtained. The effect of Ag interlayer films thickness on crystal structure, electrical conductivity, optical transmittance and mechanical flexibility of HAH tri-layer films was investigated. It is found that the crystallinity of Ag interlayer films increased with the thickness. The results demonstrated that the Ag interlayer thickness was an essential factor for the photoelectric properties of these tri-layer thin films. The optimal tri-layer thin film with 15 nm Ag film exhibited a sheet resistance of 6.37 Ω/sq and an average transmittance of 88.18% in visible region discounting PEN substrate. The bending tests revealed superior flexibility of such multilayer thin films owing to the existence of ductile Ag interlayer films. These tri-layer structure TCFs showed promising potential application for flexible photoelectric devices.



This work was financially supported by Guangdong Science and Technology Department, China (Grant No. 2014A010106009) and Guangzhou Science Technology and Innovation Commission, China (Grant No. 201804020031).


  1. 1.
    S. Calnan, A.N. Tiwari, Thin Solid Films 518, 1839–1849 (2010)CrossRefGoogle Scholar
  2. 2.
    H. Liu, V. Avrutin, N. Izyumskaya, Ü Zgür, H. Morko, Superlattices Microstruct. 48, 458–484 (2010)CrossRefGoogle Scholar
  3. 3.
    A. Aliprandi, T. Moreira, C. Anichini, M. Stoeckel, M. Eredia, U. Sassi, M. Bruna, C. Pinheiro, C.A.T. Laia, S. Bonacchi, P. Samorì, Adv. Mater. 29, 1703225 (2017)CrossRefGoogle Scholar
  4. 4.
    T.V. Dang, S. Pammi, J. Choi, S.G. Yoon, Sol. Energy Mater. Sol. Cells 163, 58–65 (2017)CrossRefGoogle Scholar
  5. 5.
    K.P. Sibin, G. Srinivas, H.D. Shashikala, A. Dey, N. Sridhara, A. Kumar Sharma, H.C. Barshilia, Sol. Energy Mater. Sol. Cells 172, 277–284 (2017)CrossRefGoogle Scholar
  6. 6.
    Y. Gao, W. Wang, N. Song, Y. Gai, Y. Zhao, J. Mater. Sci.: Mater. Electron. 28, 17031–17037 (2017)Google Scholar
  7. 7.
    G. Torrisi, I. Crupi, S. Mirabella, A. Terrasi, Sol. Energy Mater. Sol. Cells 165, 88–93 (2017)CrossRefGoogle Scholar
  8. 8.
    T.H. Kim, S.H. Park, D.H. Kim, Y.C. Nah, H.K. Kim, Sol. Energy Mater. Sol. Cells 160, 203–210 (2017)CrossRefGoogle Scholar
  9. 9.
    S. Park, S. Lee, E. Ko, T. Kim, Y. Nah, S. Lee, J.H. Lee, H. Kim, Sci. Rep. 6, 33868 (2016)CrossRefGoogle Scholar
  10. 10.
    S.B. Heo, J.H. Jeon, T.K. Gong, H.J. Moon, S.K. Kim, Ceram. Int. 41, 9668–9670 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Li, Y. Wang, Y. Wang, X. Wei, Ceram. Int. 43, 15442–15446 (2017)CrossRefGoogle Scholar
  12. 12.
    R. Shabannia, H. Abu Hassan, Appl. Phys. A 114, 579–584 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Song, T. Yang, Y. Xin, L. Jiang, Y. Li, Z. Pang, M. Lv, S. Han, Curr. Appl. Phys. 10, 452–456 (2010)CrossRefGoogle Scholar
  14. 14.
    M. Neghabi, A. Behjat, S.M.B. Ghorashi, S.M.A. Salehi, Thin Solid Films 519, 5662–5666 (2011)CrossRefGoogle Scholar
  15. 15.
    T.H. Chen, C.C. Chiang, T.Y. Chen, Microsyst. Technol. 23, 1687–1693 (2017)CrossRefGoogle Scholar
  16. 16.
    Q.X. Zhang, Y.H. Zhao, Z.H. Jia, Z.F. Qin, L. Chu, J.P. Yang, J. Zhang, W. Huang, X.A. Li, Energies 9, 443 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Singh, V. Sharma, D. Saini, K. Asokan, K. Sachdev, Ceram. Int. 43, 9759–9768 (2017)CrossRefGoogle Scholar
  18. 18.
    G. Yan, Y. Yuan, W. Chen, R. Hong, Mater. Lett. 185, 272–274 (2016)CrossRefGoogle Scholar
  19. 19.
    L. Wang, W. Chen, L. Li, J. Mater. Sci.: Mater. Electron. 28, 3458–3466 (2017)Google Scholar
  20. 20.
    J.H. Kim, H. Lee, J. Na, S. Kim, Y. Yoo, T. Seong, Ceram. Int. 41, 8059–8063 (2015)CrossRefGoogle Scholar
  21. 21.
    N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito, J. Cryst. Growth 130, 269–279 (1993)CrossRefGoogle Scholar
  22. 22.
    C.G. Van de Walle, Phys. Rev. Lett. 85, 1012–1015 (2000)CrossRefGoogle Scholar
  23. 23.
    S. Hamrit, K. Djessas, N. Brihi, B. Viallet, K. Medjnoun, S.E. Grillo, Ceram. Int. 42, 16212–16219 (2016)CrossRefGoogle Scholar
  24. 24.
    H. Han, N.D. Theodore, T.L. Alford, J. Appl. Phys. 103, 13708 (2008)CrossRefGoogle Scholar
  25. 25.
    L.W. Wang, L. Li, W.D. Chen, Surf. Rev. Lett. 24, 1750053 (2017)CrossRefGoogle Scholar
  26. 26.
    G. Haacke, J. Appl. Phys. 47, 4086 (1976)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSun Yat-sen UniversityGuangzhouChina
  2. 2.School of PhysicsSun Yat-sen UniversityGuangzhouChina
  3. 3.Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaic TechnologySun Yat-sen UniversityGuangzhouChina

Personalised recommendations