Advertisement

Reactive sputtering of vanadium nitride thin films as pseudo-capacitor electrodes for high areal capacitance and cyclic stability

  • Amine Achour
  • Raul Lucio-Porto
  • Shahram Solaymani
  • Mohammad Islam
  • Iftikhar Ahmad
  • Thierry Brousse
Article
  • 159 Downloads

Abstract

Vanadium nitride (VN) films with different thicknesses were deposited over polished silicon substrate using DC plasma reactive sputtering. These films were tested as electrodes for electrochemical capacitors in a 1 M KOH aqueous electrolyte solution. The electrodes show excellent specific capacitance with maximum areal capacitance value of 238.2 mF cm−2 at 5 mV s−1 scan rate, and 77.5% capacity retention after 2000 cycles. Moreover, the capacitance was found to increase with the VN deposit thickness. The XPS analyses of the electrodes confirm the presence of oxide and oxynitrides layers formed at the VN film surface, which could be responsible for the redox energy storage in this material. Such electrodes can compete with other pseudo-capacitive materials that deliver high energy density.

Notes

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Project No. RGP-283.

References

  1. 1.
    P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)CrossRefGoogle Scholar
  2. 2.
    T.M. Dinh, A. Achour, S. Vizireanu, G. Dinescu, L. Nistor, K. Armstrong, D. Guay, D. Pech, Hydrous RuO2/carbon nanowalls hierarchical structures for all-solid-state ultrahigh-energy-density micro-supercapacitors. Nano Energy 10, 288–294 (2014)CrossRefGoogle Scholar
  3. 3.
    D.-W. Park, N.A. Canas, M. Schwan, B. Milow, L. Ratke, K.A. Friedrich, A dual mesopore C-aerogel electrode for a high energy density supercapacitor. Curr. Appl. Phys. 16, 258–264 (2016)Google Scholar
  4. 4.
    N.A. Kyeremateng, T. Brousse, D. Pech, Micro-supercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 12, 7–15 (2017)CrossRefGoogle Scholar
  5. 5.
    Y. Yan, B. Li, W. Guo, H. Pang, H. Xue, Vanadium based materials as electrode materials for high performance supercapacitors. J. Power Sources 329, 148–169 (2016)CrossRefGoogle Scholar
  6. 6.
    D. Aradilla, F. Estrany, E. Armelin, C. Alemán, Ultraporous poly (3,4-ethylenedioxythiophene) for nanometric electrochemical supercapacitor. Thin Solid Films 520, 4402–4409 (2012)CrossRefGoogle Scholar
  7. 7.
    A.A. Yadav, Influence of electrode mass-loading on the properties of spray deposited Mn3O4 thin films for electrochemical supercapacitors. Thin Solid Films 608, 88–96 (2016)CrossRefGoogle Scholar
  8. 8.
    M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004)CrossRefGoogle Scholar
  9. 9.
    L.Y. Chen, Y. Hou, J.L. Kang, A. Hirata, T. Fujita, M.W. Chen, Toward the theoretical capacitance of RuO2 reinforced by highly conductive nanoporous gold. Adv. Energy Mater. 3, 851–856 (2013)CrossRefGoogle Scholar
  10. 10.
    R. Lucio-Porto, R. Frappier, J.B. Ducros, C. Aucher, H. Mosqueda, S. Chenu, B. Chavillon, F. Tessier, F. Cheviré, T. Brousse, Titanium and vanadium oxynitride powders as pseudo-capacitive materials for electrochemical capacitors. Electrochim. Acta 82, 257–262 (2012)CrossRefGoogle Scholar
  11. 11.
    R.L. -Porto, S. Bouhtiyya, J.F. Pierson, A. Morel, F. Capon, P. Boulet, T. Brousse, VN thin films as electrode materials for electrochemical capacitors. Electrochim. Acta 141, 203–211 (2014)CrossRefGoogle Scholar
  12. 12.
    O. Bondarchuk, A. Morel, D. Bélanger, E. Goikolea, T. Brousse, R. Mysyk, Thin films of pure vanadium nitride: evidence for anomalous non faradaic capacitance. J. Power Sources 324, 439–446 (2016)CrossRefGoogle Scholar
  13. 13.
    A. Achour, J.B. Ducros, R.L. Porto, M. Boujtita, E. Gautron, L. Le Brizoual, M.A. Djouadi, T. Brousse, Hierarchical nanocomposite electrodes based on titanium nitride and carbon nanotubes for micro-supercapacitors. Nano Energy 7, 104–113 (2014)CrossRefGoogle Scholar
  14. 14.
    A. Achour, R.L. Porto, M.-A. Soussou, M. Islam, M. Boujtita, K.A. Aissa, L. Le Brizoual, A. Djouadi, T. Brousse, Titanium nitride films for micro-supercapacitors: effect of surface chemistry and film morphology on the capacitance. J. Power Sources 300, 525–532 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Bouhtiyya, R.L. Porto, B. Laïk, P. Boulet, F. Capon, J.P. Pereira-Ramos, T. Brousse, J.F. Pierson, Application of sputtered ruthenium nitride thin films as electrode material for energy-storage devices. Scr. Mater. 68, 659–662 (2013)CrossRefGoogle Scholar
  16. 16.
    A. Achour, R. Lucio-Porto, M. Chaker, A. Arman, A. Ahmadpourian, M.A. Soussou, M. Boujtita, L. LeBrizoual, M.A. Djouadi, T. Brousse, Titanium vanadium nitride electrode for micro-supercapacitors. Electrochem. Commun. 77, 40–43 (2017)CrossRefGoogle Scholar
  17. 17.
    D. Choi, G.E. Blomgren, P.N. Kumta, Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv. Mater. 18, 1178–1182 (2006)CrossRefGoogle Scholar
  18. 18.
    P.J. Hanumantha, M.K. Datta, K. Kadakia, C. Okoli, P. Patel, P.N. Kumta, Vanadium nitride supercapacitors: effect of processing parameters on electrochemical charge storage behavior. Electrochim. Acta 207, 37–47 (2016)CrossRefGoogle Scholar
  19. 19.
    A. Achour, M.A. Soussou, K. Ait Aissa, M. Islam, N. Barreau, E. Faulques, L. Le Brizoual, M.A. Djouadi, M. Boujtita, Nanostructuration and band gap emission enhancement of ZnO film via electrochemical anodization. Thin Solid Films 571, 168–174 (2014)CrossRefGoogle Scholar
  20. 20.
    Z.N. Dai, A. Miyashita, S. Yamamoto, K. Narumi, H. Naramoto, Crystalline and nearly stoichiometric vanadium nitride thin film by PLD. Thin Solid Films 347, 117 (1999)CrossRefGoogle Scholar
  21. 21.
    S. Surnev, M.G. Ramsey, F.P. Netzer, Vanadium oxide surface studies. Prog. Surf. Sci. 73, 117–165 (2003)CrossRefGoogle Scholar
  22. 22.
    E.F. De Souza, C.A. Chagas, T.C. Ramalho, R.B. De Alencastro, A versatile low temperature solid-state synthesis of vanadium nitride (VN) via a “guanidinium-route”: experimental and theoretical studies from the key-intermediate to the final product. Dalton Trans. 41, 14381–14390 (2012)CrossRefGoogle Scholar
  23. 23.
    Y. Gao, Y. Lin, J. Chen, Q. Lin, Y. Wu, W. Su, W. Wang, Z. Fan, Three-dimensional nanotube electrode arrays for hierarchical tubular structured high-performance pseudocapacitors. Nanoscale 8, 13280–13287 (2016)CrossRefGoogle Scholar
  24. 24.
    R. Li, X. Ba, Y. Wang, W. Zuo, C. Wang, Y. Li, J. Liu, Direct growth of Fe3O4-MoO2 hybrid nanofilm anode with enhanced electrochemical performance in neutral aqueous electrolyte. Prog. Nat. Sci.: Mater. Int. 26, 258–263 (2016)CrossRefGoogle Scholar
  25. 25.
    H. Cui, G. Zhu, X. Liu, F. Liu, Y. Xie, C. Yang, T. Lin, H. Gu, F. Huang, Niobium nitride Nb4N5 as a new high-performance electrode material for supercapacitors. Adv. Sci. 2, 1500126 (2015)CrossRefGoogle Scholar
  26. 26.
    S. Ahmed, M. Rafat, Hydrothermal synthesis of PEDOT/rGO composite for supercapacitor applications. Mater. Res. Express 5, 015507 (2018)CrossRefGoogle Scholar
  27. 27.
    D. Shu, C. Lv, F. Cheng, C. He, K. Yang, J. Nan, L. Lon, Enhanced capacitance and rate capability of nanocrystalline VN as electrode materials for supercapacitors. Int. J. Electrochem. Sci. 8, 1209–1225 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LISE Laboratory, Research Centre in Physics of Matter and Radiation (PMR)University of NamurNamurBelgium
  2. 2.Facultad de Ingeniería Mecánica y EléctricaUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  3. 3.Centro de Innovación, Investigación y Desarrollo en Ingeniería y TecnologíaUniversidad Autónoma de Nuevo LeónApodacaMexico
  4. 4.Young Researchers and Elite Club, West Tehran BranchIslamic Azad UniversityTehranIran
  5. 5.Center of Excellence for Research in Engineering Materials, Deanship of Scientific ResearchKing Saud UniversityRiyadhSaudi Arabia
  6. 6.Institut des Materiaux Jean Rouxel (IMN), Universite de Nantes, CNRSNantes Cedex 3France
  7. 7.Reseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS, 3459Amiens CedexFrance

Personalised recommendations