Advertisement

Transition metal (Mn) and rare earth (Nd) di-doped novel ZnO nanoparticles: a facile sol–gel synthesis and characterization

  • A. Albert manoharan
  • R. Chandramohan
  • K. Deva Arun Kumar
  • S. Valanarasu
  • V. Ganesh
  • Mohd. Shkir
  • H. Algarni
  • S. AlFaify
Article
  • 165 Downloads

Abstract

Undoped, Mn doped and Nd co-doped ZnO nanoparticles are synthesized through a facile sol–gel route. Characterization of the synthesized samples has been done by X-ray diffraction, scanning electron microscopy, FT-IR, diffuse reflectance spectroscopy, photoluminescence spectroscopy, hall measurement and vibrating sample magnetometry. Structural and vibrational studies shown hexagonal wurtzite structure of prepared ZnO samples. SEM images have revealed that the grains are hexagonal and spherical shapes for undoped and co-doped samples. The crystallite size was found in range of 43–34 nm. The value of optical band gap is calculated and it is found ~ 3.27 eV for undoped and decreased to 3.20 eV for Mn doped, Nd co-doped sample. This tuning in band gap is because of the fact that the impurity band of ZnO is merged with the conduction band. Photoluminescence study reveals that the intensity of the prepared samples is systematically reduced with the addition of Mn and Nd doping element. Hall effect measurements reveal that the conductivity of ZnO nanoparticles is increased with respect to temperature. The magnetic measurements indicate that the obtained nanostructures are found to be room temperature ferromagnetism (RTFM) with maximum value of saturation magnetization for Nd co-doped Mn:ZnO nanoparticles, i.e. 2.44 emu g−1. Thus the magnetic properties of ZnO prepared by low cost sol–gel method have been enhanced by Mn doping as well as Nd co-doping which can be used for spintronic applications. In future, similar rare earth materials could be considered for enhancing the magnetic properties of nano particles.

Notes

Acknowledgements

The authors would like to express their gratitude to Deanship of Scientific Research at King Khalid University for funding this work through Research Groups Program under Grant No. R.G.P. 1/54/39.

Compliance with ethical standards

Conflict of interest

Authors declares that there is no conflict of interest involve in the current work.

References

  1. 1.
    G. Xing, D. Wang, J. Yi, L. Yang, M. Gao, M. He, J. Yang, J. Ding, T.C. Sum, T. Wu, Correlated d0 ferromagnetism and photoluminescence in undoped ZnO nanowires. Appl. Phys. Lett. 96, 112511 (2010)CrossRefGoogle Scholar
  2. 2.
    U. Philipose, S.V. Nair, S. Trudel, C. De Souza, S. Aouba, R.H. Hill, H.E. Ruda, High-temperature ferromagnetism in Mn-doped ZnO nanowires. Appl. Phys. Lett. 88, 263101 (2006)CrossRefGoogle Scholar
  3. 3.
    Y. Zhang, J. Xu, Q. Xiang, H. Li, Q. Pan, P. Xu, Brush-like hierarchical ZnO nanostructures: synthesis, photoluminescence and gas sensor properties. J. Phys. Chem. C 113, 3430–3435 (2009)CrossRefGoogle Scholar
  4. 4.
    L. Liu, S. Li, J. Zhuang, L. Wang, J. Zhang, H. Li, Z. Liu, Y. Han, X. Jiang, P. Zhang, Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning. Sens. Actuators B 155, 782–788 (2011)CrossRefGoogle Scholar
  5. 5.
    P. Zu, Z. Tang, G.K. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature. Solid State Commun. 103, 459–463 (1997)CrossRefGoogle Scholar
  6. 6.
    D. Bagnall, Y. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Optically pumped lasing of ZnO at room temperature. Appl. Phys. Lett. 70, 2230–2232 (1997)CrossRefGoogle Scholar
  7. 7.
    M. Kawasaki, A. Ohtomo, I. Ohkubo, H. Koinuma, Z. Tang, P. Yu, G. Wong, B. Zhang, Y. Segawa, Excitonic ultraviolet laser emission at room temperature from naturally made cavity in ZnO nanocrytal thin films. Mater. Sci. Eng. B 56, 239–245 (1998)CrossRefGoogle Scholar
  8. 8.
    A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda, Y. Segawa, Structure and optical properties of ZnO/Mg0.2Zn0.8O superlattices. Appl. Phys. Lett. 75, 980–982 (1999)CrossRefGoogle Scholar
  9. 9.
    K.D.A. Kumar, V. Ganesh, M. Shkir, S. AlFaify, S. Valanarasu, Effect of different solvents on the key structural, optical and electronic properties of sol–gel dip coated AZO nanostructured thin films for optoelectronic applications. J. Mater. Sci. Mater. Electron. 29, 887–897 (2018)CrossRefGoogle Scholar
  10. 10.
    Ü Özgür, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
  11. 11.
    K.D.A. Kumar, S. Valanarasu, A. Kathalingam, V. Ganesh, M. Shkir, S. AlFaify, Effect of solvents on sol–gel spin-coated nanostructured Al-doped ZnO thin films: a film for key optoelectronic applications. Appl. Phys. A 123, 801 (2017)CrossRefGoogle Scholar
  12. 12.
    K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, A. Kathalingam, S. AlFaify, Effect of precursors on key opto-electrical properties of successive ion layer adsorption and reaction-prepared Al:ZnO thin films. J. Electron. Mater. 47, 1335–1343 (2018)CrossRefGoogle Scholar
  13. 13.
    Y.W. Heo, D. Norton, L. Tien, Y. Kwon, B. Kang, F. Ren, S. Pearton, J. LaRoche, ZnO nanowire growth and devices. Mater. Sci. Eng. R 47, 1–47 (2004)CrossRefGoogle Scholar
  14. 14.
    G.-C. Yi, C. Wang, W.I. Park, ZnO nanorods: synthesis, characterization and applications. Semicond. Sci. Technol. 20, S22 (2005)CrossRefGoogle Scholar
  15. 15.
    N. Matinise, X. Fuku, K. Kaviyarasu, N. Mayedwa, M. Maaza, ZnO nanoparticles via Moringa oleifera green synthesis: physical properties & mechanism of formation. Appl. Surf. Sci. 406 339–347 (2017)CrossRefGoogle Scholar
  16. 16.
    S. Jung, S.-J. An, G.-C. Yi, C. Jung, S.-I. Lee, S. Cho, Ferromagnetic properties of Zn1–xMnxO epitaxial thin films. Appl. Phys. Lett. 80, 4561–4563 (2002)CrossRefGoogle Scholar
  17. 17.
    Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: a series of oxide-diluted magnetic semiconductors and their properties. Appl. Phys. Lett. 78, 3824–3826 (2001)CrossRefGoogle Scholar
  18. 18.
    M. Nirmala, P. Smitha, A. Anukaliani, Optical and electrical properties of undoped and (Mn, Co) co-doped ZnO nanoparticles synthesized by DC thermal plasma method. Superlattices Microstruct. 50, 563–571 (2011)CrossRefGoogle Scholar
  19. 19.
    M. Ungureanu, H. Schmidt, Q. Xu, H. von Wenckstern, D. Spemann, H. Hochmuth, M. Lorenz, M. Grundmann, Electrical and magnetic properties of RE-doped ZnO thin films (RE = Gd, Nd). Superlattices Microstruct. 42, 231–235 (2007)CrossRefGoogle Scholar
  20. 20.
    Q. Xu, H. Schmidt, H. Hochmuth, M. Lorenz, A. Setzer, P. Esquinazi, C. Meinecke, M. Grundmann, Room temperature ferromagnetism in Nd-and Mn-codoped ZnO films. J. Phys. D. 41, 105012 (2008)CrossRefGoogle Scholar
  21. 21.
    A. Diallo, B. Ngom, E. Park, M. Maaza, Green synthesis of ZnO nanoparticles by Aspalathus linearis: structural & optical properties. J. Alloy. Compd. 646, 425–430 (2015)CrossRefGoogle Scholar
  22. 22.
    M. Arularasu, M. Anbarasu, S. Poovaragan, R. Sundaram, K. Kanimozhi, C.M. Magdalane, K. Kaviyarasu, F. Thema, D. Letsholathebe, G.T. Mola, Structural, optical, morphological and microbial studies on SnO2 nanoparticles prepared by co-precipitation method. J. Nanosci. Nanotechnol. 18, 3511–3517 (2018)CrossRefGoogle Scholar
  23. 23.
    K. Kaviyarasu, P. Murmu, J. Kennedy, F. Thema, D. Letsholathebe, L. Kotsedi, M. Maaza, Structural, optical and magnetic investigation of Gd implanted CeO2 nanocrystals. Nuclear Instrum. Methods Phys. Res. Sect. B 409, 147–152 (2017)CrossRefGoogle Scholar
  24. 24.
    K. Kaviyarasu, P.A. Devarajan, A convenient route to synthesize hexagonal pillar shaped ZnO nanoneedles via CTAB surfactant. Adv. Mater. Lett. 4, 582–585 (2013)CrossRefGoogle Scholar
  25. 25.
    Y. Morinaga, K. Sakuragi, N. Fujimura, T. Ito, Effect of Ce doping on the growth of ZnO thin films. J. Crystal Growth 174, 691–695 (1997)CrossRefGoogle Scholar
  26. 26.
    B. Poornaprakash, U. Chalapathi, S. Babu, S.-H. Park, Structural, morphological, optical, and magnetic properties of Gd-doped and (Gd, Mn) co-doped ZnO nanoparticles. Physica E, 93, 111–115 (2017)CrossRefGoogle Scholar
  27. 27.
    M. Nirmala, A. Anukaliani, Structural and optical properties of an undoped and Mn doped ZnO nanocrysatlline thin film. Photon. Lett. Poland 2, 189–191 (2010)Google Scholar
  28. 28.
    B. Roy, S. Chakrabarty, O. Mondal, M. Pal, A. Dutta, Effect of neodymium doping on structure, electrical and optical properties of nanocrystalline ZnO. Mater. Charact. 70, 1–7 (2012)CrossRefGoogle Scholar
  29. 29.
    K.P. Misra, R. Shukla, A. Srivastava, A. Srivastava, Blueshift in optical band gap in nanocrystalline Zn1–xCaxO films deposited by sol-gel method. Appl. Phys. Lett. 95, 031901 (2009)CrossRefGoogle Scholar
  30. 30.
    M. Shkir, S. AlFaify, Tailoring the structural, morphological, optical and dielectric properties of lead iodide through Nd3+ doping. Sci. Rep. 7, 16091 (2017)CrossRefGoogle Scholar
  31. 31.
    S. AlFaify, M. Shkir, V. Ganesh, Facile one pot synthesis of novel Hg2+ doped PbI2 nanostructures for optoelectronic and radiation shielding applications. Mater. Sci. Semicond. Process. 83, 231–238 (2018)CrossRefGoogle Scholar
  32. 32.
    K.D.A. Kumar, S. Valanarasu, V. Tamilnayagam, L. Amalraj, Structural, morphological and optical properties of SnS2 thin films by nebulized spray pyrolysis technique. J. Mater. Sci. Mater. Electron. 28, 14209–14216 (2017)CrossRefGoogle Scholar
  33. 33.
    K.D.A. Kumar, S. Valanarasu, A. Kathalingam, K. Jeyadheepan, Nd3+ doping effect on the optical and electrical properties of SnO2 thin films prepared by nebulizer spray pyrolysis for opto-electronic application. Mater. Res. Bull. 101, 264–271 (2018)CrossRefGoogle Scholar
  34. 34.
    A. Samy, E. Gomaa, N. Mostafa, Study the properties of Cu-Zn ferrite substituted with rare earth ions by using positron annihilation analysis. Open Ceram. Sci. J. 1, 1–4 (2010)CrossRefGoogle Scholar
  35. 35.
    S. Sharma, R. Kundu, A. Singh, S. Murugavel, R. Punia, N. Kishore, Structural, optical, electrical, and magnetic properties of Zn0.7MnxNi0.3–xO nanoparticles synthesized by sol–gel technique. Cogent Phys. 2, 1055623 (2015)CrossRefGoogle Scholar
  36. 36.
    N. Vigneshwaran, S. Kumar, A. Kathe, P. Varadarajan, V. Prasad, Functional finishing of cotton fabrics using zinc oxide–soluble starch nanocomposites. Nanotechnology 17, 5087 (2006)CrossRefGoogle Scholar
  37. 37.
    A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. Alves, D. Hofmann, Nitrogen-related local vibrational modes in ZnO:N. Appl. Phys. Lett. 80, 1909–1911 (2002)CrossRefGoogle Scholar
  38. 38.
    G. Adamopoulos, A. Bashir, W.P. Gillin, S. Georgakopoulos, M. Shkunov, M.A. Baklar, N. Stingelin, D.D. Bradley, T.D. Anthopoulos, Structural and electrical characterization of ZnO films grown by spray pyrolysis and their application in thin-film transistors. Adv. Func. Mater. 21, 525–531 (2011)CrossRefGoogle Scholar
  39. 39.
    J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi (B) 15, 627–637 (1966)CrossRefGoogle Scholar
  40. 40.
    M. Shkir, I.S. Yahia, S. AlFaify, M.M. Abutalib, S. Muhammad, Facile synthesis of lead iodide nanostructures by microwave irradiation technique and their structural, morphological, photoluminescence and dielectric studies. J. Mol. Struct. 1110, 83–90 (2016)CrossRefGoogle Scholar
  41. 41.
    M. Shkir, Effect of titan yellow dye on morphological, structural, optical, and dielectric properties of zinc(tris) thiourea sulphate single crystals. J. Mater. Res. 31, 1046–1055 (2016)CrossRefGoogle Scholar
  42. 42.
    D. Zhao, S. Xu, M. Xie, S. Tong, H. Yang, Stress and its effect on optical properties of GaN epilayers grown on Si (111), 6H-SiC (0001), and c-plane sapphire. Appl. Phys. Lett. 83, 677–679 (2003)CrossRefGoogle Scholar
  43. 43.
    S. Rejitha, C. Krishnan, Synthesis of cadmium-doped copper oxide nanoparticles: optical and structural characterizations. Adv. Appl. Sci. Res. 4, 103 (2013)Google Scholar
  44. 44.
    M. Anpo, M. Kondo, C. Louis, M. Che, S. Coluccia, Application of dynamic photoluminescence spectroscopy to the study of the active surface sites on supported molybdenum/silica catalysts: features of anchored and impregnated catalysts. J. Am. Chem. Soc. 111, 8791–8799 (1989)CrossRefGoogle Scholar
  45. 45.
    A. Ahmed, N.S. Gajbhiye, A.G. Joshi, Low cost, surfactant-less, one pot synthesis of Cu2O nano-octahedra at room temperature. J. Solid State Chem. 184, 2209–2214 (2011)CrossRefGoogle Scholar
  46. 46.
    V. Roy, A. Djurišić, H. Liu, X. Zhang, Y. Leung, M. Xie, J. Gao, H. Lui, C. Surya, Magnetic properties of Mn doped ZnO tetrapod structures. Appl. Phys. Lett. 84, 756–758 (2004)CrossRefGoogle Scholar
  47. 47.
    D.J. Edison, W. Nirmala, K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, Structural, optical and nonlinear optical studies of AZO thin film prepared by SILAR method for electro-optic applications. Physica B 523, 31–38 (2017)CrossRefGoogle Scholar
  48. 48.
    V. Anand, A. Sakthivelu, K.D.A. Kumar, S. Valanarasu, A. Kathalingam, V. Ganesh, M. Shkir, S. AlFaify, I. Yahia, Rare earth Sm3+ co-doped AZO thin films for opto-electronic application prepared by spray pyrolysis. Ceram. Int. 44, 6730–6738 (2018)CrossRefGoogle Scholar
  49. 49.
    T.K. Gupta, Microstructural engineering through donor and acceptor doping in the grain and grain boundary of a polycrystalline semiconducting ceramic. J. Mater. Res. 7, 3280–3295 (1992)CrossRefGoogle Scholar
  50. 50.
    H.-J. Koo, M.-H. Whangbo, Magnetic superstructures of cupric oxide CuO as ordered arrangements of one-dimensional antiferromagnetic chains. Inorg. Chem. 42, 1187–1192 (2003)CrossRefGoogle Scholar
  51. 51.
    S. Rehman, A. Mumtaz, S. Hasanain, Size effects on the magnetic and optical properties of CuO nanoparticles. J. Nanoparticle Res. 13, 2497–2507 (2011)CrossRefGoogle Scholar
  52. 52.
    R. Gupta, K. Ghosh, L. Dong, P. Kahol, Green synthesis of hematite (α-Fe2O3) submicron particles. Mater. Lett. 64, 2132–2134 (2010)CrossRefGoogle Scholar
  53. 53.
    G.N. Rao, Y. Yao, J. Chen, Influence of Mn substitution on microstructure and magnetic properties of Cu1–xMnxO nanoparticles. J. Appl. Phys. 101, 09H119 (2007)CrossRefGoogle Scholar
  54. 54.
    F. Zhao, H. Qiu, L. Pan, H. Zhu, Y. Zhang, Z. Guo, J. Yin, X. Zhao, J.Q. Xiao, Ferromagnetism analysis of Mn-doped CuO thin films. J. Phys. Condens. Matter. 20, 425208 (2008)CrossRefGoogle Scholar
  55. 55.
    J. Coey, M. Venkatesan, C. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173 (2005)CrossRefGoogle Scholar
  56. 56.
    S. Kumar, P. Sahare, Nd-doped ZnO as a multifunctional nanomaterial. J. Rare Earths 30, 761–768 (2012)CrossRefGoogle Scholar
  57. 57.
    R. Bhowmik, N. Naresh, B. Ghosh, S. Banerjee, Study of low temperature ferromagnetism, surface paramagnetism and exchange bias effect in α-Fe1.4Ga0.6O3 oxide. Curr. Appl. Phys. 14, 970–979 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.PG and Research Department of PhysicsSree Sevugan Annamalai CollegeDevakottaiIndia
  2. 2.PG and Research Department of PhysicsArul Anandar College, KarumathurMaduraiIndia
  3. 3.Advanced Functional Materials and Optoelectronics Laboratory (AFMOL), Department of Physics, College of ScienceKing Khalid UniversityAbhaSaudi Arabia

Personalised recommendations