Polymeric graphitic carbon nitride–barium titanate nanocomposites with different content ratios: a comparative investigation on dielectric and optical properties

  • Saurabh PareekEmail author
  • Mandakini Sharma
  • Sohan Lal
  • Jitendra Kumar Quamara


Absorption capability of barium titanate (BaTiO3) was enhanced by coupling it with graphitic carbon nitride (g-C3N4) a polymeric semiconducting material. g-C3N4–BaTiO3 nanocomposite was prepared with different weight percentage of g-C3N4 (3–18%) by simple solution method and was further characterized for analysing the properties of prepared material like structural and morphological properties were examined utilizing scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and FTIR spectroscopy. Photoluminescence and UV–Vis spectrophotometers were used for studying the optical properties and impedance analyser was used for measuring the dielectric constant, loss factor and charge transfer resistance. From the optical and dielectric studies we can predict that absorption was slightly enhanced toward visible region, recombination loses were reduced and the band gap values calculated were in close approximation with the dielectric constant data. On the basis of above studies we can say that optimum concentration was 3 and 6% g-C3N4 nanocomposite.



Authors are thankful to Head, Department of Physics and Coordinator, School of Material Science & Technology National Institute of Technology, Kurukshetra for providing the necessary facilities. Authors are also thankful to Central Research Facility, IIT Delhi for providing the TEM Facility.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of Interest.


  1. 1.
    S. Zhao, S. Chen, H. Yu, X. Quan, Sep. Purif. Technol. 99, 50 (2012)CrossRefGoogle Scholar
  2. 2.
    T.R. Chetia, M.S. Ansari, M. Qureshi, J. Mater. Chem. A 4, 5528 (2016)CrossRefGoogle Scholar
  3. 3.
    S. Lee, I.S. Cho, J.H. Lee, D.H. Kim, D.W. Kim, J.Y. Kim, H. Shin, J.K. Lee, H.S. Jung, N.G. Park, K. Kim, M.J. Ko, K.S. Hong, Chem. Mater. 22, 1958 (2010)CrossRefGoogle Scholar
  4. 4.
    G.S. Selopal, H.P. Wu, J. Lu, Y.C. Chang, M. Wang, A. Vomiero, I. Concina, E.W.G. Diau, Sci. Rep. 6, 1 (2016)CrossRefGoogle Scholar
  5. 5.
    S. Kappadan, T.W. Gebreab, S. Thomas, N. Kalarikkal, Mater. Sci. Semicond. Process. 51, 42 (2016)CrossRefGoogle Scholar
  6. 6.
    K. Meng, P.K. Surolia, K.R. Thampi, J. Mater. Chem. A 2, 10231 (2014)CrossRefGoogle Scholar
  7. 7.
    S.G. Kumar, K.S.R.K. Rao, RSC Adv. 5, 3306 (2015)CrossRefGoogle Scholar
  8. 8.
    T. Marimuthu, N. Anandhan, R. Thangamuthu, S. Surya, J. Alloys Compd. 693, 1011 (2017)CrossRefGoogle Scholar
  9. 9.
    R.K. Chava, S. Raj, Y.-T. Yu, J. Alloys Compd. 672, 212 (2016)CrossRefGoogle Scholar
  10. 10.
    T. Xian, H. Yang, L.J. Di, J.F. Dai, J. Alloys Compd. 622, 1098 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Okamoto, Y. Suzuki, J. Phys. Chem. C 120, 13995 (2016)CrossRefGoogle Scholar
  12. 12.
    J. Liu, Y. Sun, Z. Li, CrystEngComm 14, 1473 (2012)CrossRefGoogle Scholar
  13. 13.
    H. Fan, H. Li, B. Liu, Y. Lu, T. Xie, D. Wang, ACS Appl. Mater. Interfaces 4, 4853 (2012)CrossRefGoogle Scholar
  14. 14.
    Y. Cui, J. Briscoe, S. Dunn, Chem. Mater. 25, 4215 (2013)CrossRefGoogle Scholar
  15. 15.
    K.T. Butler, J.M. Frost, A. Walsh, Energy Environ. Sci. 8, 838 (2014)CrossRefGoogle Scholar
  16. 16.
    S. Kumar, T. Surendar, B. Kumar, A. Baruah, V. Shanker, J. Phys. Chem. C 117, 26135 (2013)CrossRefGoogle Scholar
  17. 17.
    Z. Cui, H. Yang, X. Zhao, Mater. Sci. Eng. B 229, 160 (2018)CrossRefGoogle Scholar
  18. 18.
    M.Q. Yang, N. Zhang, Y.J. Xu, ACS Appl. Mater. Interfaces 5, 1156 (2013)CrossRefGoogle Scholar
  19. 19.
    H. Fakhri, A.R. Mahjoub, A.H. Cheshme Khavar, Mater. Sci. Semicond. Process. 41, 38 (2016)CrossRefGoogle Scholar
  20. 20.
    H. Zhu, D. Chen, D. Yue, Z. Wang, H. Ding, J. Nanopart. Res. 16, 1 (2014)Google Scholar
  21. 21.
    R. Malik, V.K. Tomer, L. Kienle, V. Chaudhary, S. Nehra, S. Duhan, Adv. Mater. Interfaces 1701357, 1 (2018)Google Scholar
  22. 22.
    F. Schütt, S. Signetti, H. Krüger, S. Röder, D. Smazna, S. Kaps, S.N. Gorb, Y.K. Mishra, N.M. Pugno, R. Adelung, Nat. Commun. 8, 1 (2017)CrossRefGoogle Scholar
  23. 23.
    R. Malik, V.K. Tomer, V. Chaudhary, M.S. Dahiya, S.P. Nehra, S. Duhan, K. Kailasam, Sens. Actuators B 255, 3564 (2018)CrossRefGoogle Scholar
  24. 24.
    J. Luo, J. Liu, Z. Zeng, C.F. Ng, L. Ma, H. Zhang, J. Lin, Z. Shen, H.J. Fan, Nano Lett. 13, 6136 (2013)CrossRefGoogle Scholar
  25. 25.
    L. Pan, H. Zhao, W. Shen, X. Dong, J. Xu, J. Mater. Chem. A 1, 7159 (2013)CrossRefGoogle Scholar
  26. 26.
    B. Li, H. Cao, J. Shao, M. Qu, J.H. Warner, J. Mater. Chem. 21, 5069 (2011)CrossRefGoogle Scholar
  27. 27.
    Z.J. Han, D.H. Seo, S. Yick, J.H. Chen, K.K. Ostrikov, NPG Asia Mater. 6, e140 (2014)CrossRefGoogle Scholar
  28. 28.
    M.A. Deyab, J. Power Sources 268, 50 (2014)CrossRefGoogle Scholar
  29. 29.
    R. Kumar, R.K. Singh, P. Kumar Dubey, D.P. Singh, R.M. Yadav, R.S. Tiwari, RSC Adv. 5, 7112 (2015)CrossRefGoogle Scholar
  30. 30.
    J. Kim, W.-H. Khoh, B.-H. Wee, J.-D. Hong, RSC Adv. 5, 9904 (2015)CrossRefGoogle Scholar
  31. 31.
    Y. Haldorai, S.K. Hwang, A.I. Gopalan, Y.S. Huh, Y.K. Han, W. Voit, G. Sai-Anand, K.P. Lee, Biosens. Bioelectron. 79, 543 (2016)CrossRefGoogle Scholar
  32. 32.
    Y.Z. Wu, M. Chen, X.H. Yan, J. Ren, Y. Dai, J.J. Wang, J.M. Pan, Y.P. Wang, X.N. Cheng, Mater. Lett. 198, 114 (2017)CrossRefGoogle Scholar
  33. 33.
    J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, A. Cao, D. Wu, Nano Lett. 7, 2317 (2007)CrossRefGoogle Scholar
  34. 34.
    C.X. Guo, H. Bin Yang, Z.M. Sheng, Z.S. Lu, Q.L. Song, C.M. Li, Angew. Chem. Int. Ed. 49, 3014 (2010)CrossRefGoogle Scholar
  35. 35.
    J. Liu, H. Wang, M. Antonietti, Chem. Soc. Rev. 45, 2308 (2016)CrossRefGoogle Scholar
  36. 36.
    X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8, 76 (2009)CrossRefGoogle Scholar
  37. 37.
    S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P.M. Ajayan, Adv. Mater. 25, 2452 (2013)CrossRefGoogle Scholar
  38. 38.
    T. An, J. Tang, Y. Zhang, Y. Quan, X. Gong, A.M. Al-Enizi, A.A. Elzatahry, L. Zhang, G. Zheng, ACS Appl. Mater. Interfaces 8, 12772 (2016)CrossRefGoogle Scholar
  39. 39.
    S. Martha, A. Nashim, K.M. Parida, J. Mater. Chem. A 1, 7816 (2013)CrossRefGoogle Scholar
  40. 40.
    Y. Zheng, Y. Jiao, J. Chen, J. Liu, J. Liang, A. Du, W. Zhang, Z. Zhu, S.C. Smith, M. Jaroniec, G. Qing, M. Lu, S.Z. Qiao, J. Am. Chem. Soc. 133, 20116 (2011)CrossRefGoogle Scholar
  41. 41.
    X. She, H. Xu, Y. Xu, J. Yan, J. Xia, L. Xu, Y. Song, Y. Jiang, Q. Zhang, H. Li, J. Mater. Chem. A 2, 2563 (2014)CrossRefGoogle Scholar
  42. 42.
    X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, J. Am. Chem. Soc. 135, 18 (2013)Google Scholar
  43. 43.
    L. Tian, X. Wei, Q. Zhuang, C. Jiang, C. Wu, G. Ma, X. Zhao, Z. Zong, S. Sun, Nanoscale 6, 6075 (2014)CrossRefGoogle Scholar
  44. 44.
    H. Yan, H. Yang, J. Alloys Compd. 509, L26 (2011)CrossRefGoogle Scholar
  45. 45.
    C. Miranda, H. Mansilla, J. Yáñez, S. Obregón, G. Colón, J. Photochem. Photobiol. A 253, 16 (2013)CrossRefGoogle Scholar
  46. 46.
    J. Lei, Y. Chen, F. Shen, L. Wang, Y. Liu, J. Zhang, J. Alloys Compd. 631, 328 (2015)CrossRefGoogle Scholar
  47. 47.
    F. Chang, J. Zhang, Y. Xie, J. Chen, C. Li, J. Wang, J. Luo, B. Deng, X. Hu, Appl. Surf. Sci. 311, 574 (2014)CrossRefGoogle Scholar
  48. 48.
    W. Hu, L. Li, G. Li, C. Tang, L. Sun, Cryst. Growth Des. 9, 3676 (2009)CrossRefGoogle Scholar
  49. 49.
    A. Testino, M.T. Buscaglia, M. Viviani, V. Buscaglia, P. Nanni, J. Am. Ceram. Soc. 87, 79 (2004)CrossRefGoogle Scholar
  50. 50.
    S. Pareek, J.K. Quamara, J. Mater. Sci. 53, 604 (2018)CrossRefGoogle Scholar
  51. 51.
    B.D. Cullity, Elements of X-ray diffraction (Addison-Wesley Publishing Company, Inc., Massachusetts, 1956), p. 99Google Scholar
  52. 52.
    B.D. Cullity, Elements of X-ray diffraction (Addison-Wesley Publishing Company, Inc., Massachusetts, 1956), p. 84Google Scholar
  53. 53.
    B.D. Cullity, Elements of X-ray diffraction (Addison-Wesley Publishing Company, Inc., Massachusetts, 1956), p. 88Google Scholar
  54. 54.
    S. Liang, Y. Zhou, Z. Cai, C. She, Appl. Organometal. Chem. 30, 932 (2016)CrossRefGoogle Scholar
  55. 55.
    R. Mohini, N. Lakshminarasimhan, Mater. Res. Bull. 76, 370 (2016)CrossRefGoogle Scholar
  56. 56.
    M. Bledowski, L. Wang, A. Ramakrishnan, O.V. Khavryuchenko, V.D. Khavryuchenko, P.C. Ricci, J. Strunk, T. Cremer, C. Kolbeck, R. Beranek, Phys. Chem. Chem. Phys. 13, 21511 (2011)CrossRefGoogle Scholar
  57. 57.
    J. Wang, W. De Zhang, Electrochim. Acta 71, 10 (2012)CrossRefGoogle Scholar
  58. 58.
    N. Yang, G. Li, W. Wang, X. Yang, W.F. Zhang, J. Phys. Chem. Solids 72, 1319 (2011)CrossRefGoogle Scholar
  59. 59.
    A.E. Shalan, M.M. Rashad, Y. Yu, M. Lira-Cantú, M.S.A. Abdel-Mottaleb, Appl. Phys. A 110, 111 (2013)CrossRefGoogle Scholar
  60. 60.
    A.A. Kumar, A. Kumar, J.K. Quamara, G.R. Dillip, S.W. Joo, J. Kumar, RSC Adv. 5, 17202 (2015)CrossRefGoogle Scholar
  61. 61.
    R. Singh, R.K. Ulrich, Electrochem. Soc. Interface 8, 26 (1999)Google Scholar
  62. 62.
    Z. Yi, X. Tian, Q. Han, Y. Cheng, J. Lian, Y. Wu, L. Wang, Electrochim. Acta 192, 188 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Saurabh Pareek
    • 1
    Email author
  • Mandakini Sharma
    • 2
  • Sohan Lal
    • 3
  • Jitendra Kumar Quamara
    • 3
  1. 1.Centre for Energy StudiesIndian Institute of Technology DelhiNew DelhiIndia
  2. 2.School of Material Science & TechnologyNational Institute of Technology KurukshetraKurukshetraIndia
  3. 3.Department of PhysicsNational Institute of Technology KurukshetraKurukshetraIndia

Personalised recommendations