Inkjet printed flexible electronics on paper substrate with reduced graphene oxide/carbon black ink

  • An Ji
  • Yiming Chen
  • Xinyi Wang
  • Changyan XuEmail author


A reduced graphene oxide (RGO) and carbon black (CB) ink was fabricated with a mixture of ethanol/ethanediol/propanetriol/deionized water as a solvent, and sodium carboxymethyl cellulose (CMC) as a binding and dispersant. The RGO was obtained by reducing graphene oxide using ascorbic acid as a green reductant at a mild temperature of 95 °C. The flexible paper-based electronic circuits were fabricated by inkjet printing the obtained ink on glossy photo paper substrate with an Epson piezoelectric printer. When the loads of RGO, CB, ethanol, ethylene glycol, glycerol, CMC and deionized water were 96 mg, 504 mg, 12 ml, 30 ml, 30 ml, 480 mg and 51 ml, the electrical conductivity, average particle size and viscosity of the ink were 122.4 µs/cm, 1.966 µm and 22.5 mPa s, respectively; and the ink exhibited good acid resistance. A continuous, dense and uniform conductive network was achieved when the printing pass number was 4 for a single circuit. The resistance at both ends of the aforementioned printed circuit (10 × 2 × 0.03338, length × width × thickness, mm) was 0.1 MΩ with a resistivity of 0.661 Ωm for the ink layer, and the circuits showed moderate uniformity, adhesion and mechanical flexibility. In the light-emitting diode operation, the three-dimensional conductive circuits also presented good electrical conductivity.



This work was financially supported by “A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)” and National Natural Science Foundation of China (Grant No. 31370567).


  1. 1.
    A. Capasso, A.E.D.R. Castillo et al., Solid State Commun. 224, 53–63 (2015)CrossRefGoogle Scholar
  2. 2.
    A.C. Siegel, S.T. Phillips, M.D. Dickey et al., Adv. Funct. Mater. 20, 28–35 (2010)CrossRefGoogle Scholar
  3. 3.
    K. Kim, S.I. Ahn, K.C. Choi, Carbon 66, 172–177 (2014)CrossRefGoogle Scholar
  4. 4.
    S. Kim, B. Cook, T. Le et al., IET Microware Antennas Propag. 7, 858–868 (2013)CrossRefGoogle Scholar
  5. 5.
    M. Vaseem, K.M. Lee, A. Hong et al., ACS Appl. Mater. Interfaces 4, 3300–3307 (2012)CrossRefGoogle Scholar
  6. 6.
    S. Hurch, H. Nolan, T. Hallam et al., Carbon 71, 332–337 (2014)CrossRefGoogle Scholar
  7. 7.
    Y. Gao, W. Shi, W. Wang et al., Ind. Eng. Chem. Res. 53, 16777–16784 (2014)CrossRefGoogle Scholar
  8. 8.
    T. Takenobu, N. Miura, S.Y. Lu et al., Appl. Phys. Express 2, 0255005 (2009)CrossRefGoogle Scholar
  9. 9.
    G. Cummins, M.P.Y. Desmulliez, Circuit World 3, 193–213 (2012)CrossRefGoogle Scholar
  10. 10.
    R. Giardi, S. Porro, A. Chiolerio et al., J. Mater. Sci. 48, 1249–1255 (2013)CrossRefGoogle Scholar
  11. 11.
    E.S. Snow, J.P. Novak, D. Park et al., Appl. Phys. Lett. 82, 2145 (2003)CrossRefGoogle Scholar
  12. 12.
    A. Kamyshny, J. Steinke, S. Magdassi, Open Appl. Phys. J. 4, 19–36 (2011)CrossRefGoogle Scholar
  13. 13.
    M. Ha, Y. Xia, A.A. Green, et al., ACS Nano 4, 4388–4395 (2010)CrossRefGoogle Scholar
  14. 14.
    M. Ha, J.T. Seo, P.L. Prabhumirashi et al., Nono Lett. 13, 954–960 (2013)CrossRefGoogle Scholar
  15. 15.
    B. Kim, S. Jang, P.L. Prabhumirashi et al., Appl. Phys. Lett. 103, 082119 (2013)CrossRefGoogle Scholar
  16. 16.
    V. Singh, D. Joung, L. Zhai, et al., Prog. Mater Sci. 56, 1178–1271 (2011)CrossRefGoogle Scholar
  17. 17.
    P. Avouris, Z. Chen, Nat. Nanotechnol. 2, 605–615 (2007)CrossRefGoogle Scholar
  18. 18.
    E.B. Secor, M.C. Hersam, J. Phys. Chem. Lett. 6, 620 (2015)CrossRefGoogle Scholar
  19. 19.
    M. Romagnoli, M.L. Gualtieri, M. Cannio et al., Mater. Chem. Phys. 182, 263–271 (2016)CrossRefGoogle Scholar
  20. 20.
    J. Li, F. Ye, S. Vaziri et al., Adv. Mater. 25, 3985–3992 (2013)CrossRefGoogle Scholar
  21. 21.
    A. Lerf, H. He, M. Forster et al., J. Phys. Chem. B 102, 4477 (1988)CrossRefGoogle Scholar
  22. 22.
    D. Kong, L.T. Le, Y. Li et al., Langmuir 28, 13467–13472 (2012)CrossRefGoogle Scholar
  23. 23.
    M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110, 132–145 (2010)CrossRefGoogle Scholar
  24. 24.
    A.A. Green, M.C. Hersam, J. Phys. Chem. Lett. 1, 544–549 (2010)CrossRefGoogle Scholar
  25. 25.
    F. Torrisi, T. Hasan, W. Wu et al., ACS Nano 6, 2992–3006 (2012)CrossRefGoogle Scholar
  26. 26.
    D. Finn, M. Lotya, G. Cunningham et al., J. Mater. Chem. C 2, 925–932 (2014)CrossRefGoogle Scholar
  27. 27.
    E.B. Secor, P.L. Prabhumirashi et al., J. Phys. Chem. Lett. 4, 1347–1351 (2013)CrossRefGoogle Scholar
  28. 28.
    S. Shukla, K. Domican, K. Karan et al., Electrochim. Acta 156, 289–300 (2015)CrossRefGoogle Scholar
  29. 29.
    C. Svanberg, T. Pham, M.A. Malik et al., US Patent EP2374842 (2013)Google Scholar
  30. 30.
    W.S. Hummers Jr, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  31. 31.
    Y. Xu, H. Bai, G. Lu et al., J. Am. Chem. Soc. 130, 5856–5857 (2008)CrossRefGoogle Scholar
  32. 32.
    D. He, L. Shen, X. Zhang et al., AIChE J. 60, 2757–2764 (2014)CrossRefGoogle Scholar
  33. 33.
    J.W. Han, B. Kim, J. Li et al., Mater. Res. Bull. 50, 249–253 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringNanjing Forestry UniversityJiangsuChina
  2. 2.School of PackagingMichigan State UniversityEast LansingUSA

Personalised recommendations