Effect of 6R and 12R lead iodide polytypes on MAPbI3 perovskite device performance

  • T. D. MalevuEmail author
  • B. S. Mwankemwa
  • K. G. Tshabalala
  • M. Diale
  • R. O. OcayaEmail author


We compare the structural, morphological and electrical properties of two variants of the ITO/ZnO/\(\hbox {CH}_3\hbox {NH}_3\hbox {PbI}_3\)/PDOT:PSS/Au thin film perovskite device made using two structurally different forms of lead iodide. The first device was based on a commercially sourced, common 12R polytype. The second device uses the rarer 6R polytype, as recently synthesized by the authors from depleted sealed lead acid batteries. XRD measurements confirmed the presence of the orthorhombic 6R polytype and the tetragonal 12R polytype. Raman spectroscopy confirmed the presence of all organic–inorganic halide materials. Current–voltage measurements for both samples show good rectifying behavior of the resulting heterogeneous Schottky diodes. The ideality factors and barrier heights were found to be 4.07/4.09 and 0.500/0.496 eV for the 6R/12R polytypes, respectively. The 6R polytype devices appeared to show improved I–V characteristics in comparison to the 12R polytype, thus suggesting an avenue to enhance the performance of MAPbX3 prevoskite devices.



The authors wish to thank the National Research Foundation, through the NRF-DST Innovation Grant No. 94944, and the University of the Free State for financial support.


  1. 1.
    E.M. Hutter, M.C. Gélvez-Rueda, A. Osherov, V. Bulović, F.C. Grozema, S.D. Stranks, T.J. Savenije, Direct–indirect character of the bandgap in methylammonium lead iodide perovskite. Nat Mater. 16, 115–120 (2017)  CrossRefGoogle Scholar
  2. 2.
    J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, 6.5 percent efficient perovskite quantum-dot-sensitized solar cell. R. Soc. Chem. 3, 4088–4093 (2011)Google Scholar
  3. 3.
    F. Giustino, H.J. Snaith, Toward lead-free perovskite solar cells. ACS Energy Lett. 1, 1233–1240 (2016)CrossRefGoogle Scholar
  4. 4.
    M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2(338), 643–647 (2012)CrossRefGoogle Scholar
  5. 5.
    K. Wang, C. Liu, P. Du, H. Zhang, X. Gong, Efficient perovskite hybrid solar cells through a homogeneous high-quality organolead iodide layer. Mater. Views 11(27), 3369–3376 (2015)Google Scholar
  6. 6.
    Q. Zhou, Z. Jin, H. Li, J. Wang, Enhancing performance and uniformity of \(\text{CH}_{3}\text{NH}_{3}\text{PbI}_{3-x}\text{Cl}_{x}\) perovskite solar cells by air-heated-oven assisted annealing under various humidities. Sci. Rep. 6, 21257 (2016)CrossRefGoogle Scholar
  7. 7.
    B.S. Mwankemwa, F.J. Nambala, F. Kyeyune, T.T. Hlatshwayo, J.M. Nel, M. Diale, Influence of ammonia concentration on the microstructure, electrical and Raman properties of low temperature chemical bath deposited ZnO nanorods. Mater. Sci. Semicond. Process. 71, 209–216 (2017)CrossRefGoogle Scholar
  8. 8.
    T.D. Malevu, R.O. Ocaya, K.G. Tshabalala, C. Fernandez, Synthesis and characterization of high quality \(\text{PbI}_2\) nanopowders from depleted SLA accumulator anode and cathodes. Appl. Phys. A 122, 630 (2016)CrossRefGoogle Scholar
  9. 9.
    W.T. Wang, S.K. Das, Y. Tai, Fully ambient-processed perovskite film for perovskite solar cells: Effect of solvent polarity on lead iodide. Appl. Mater. Interfaces 9, 10743–10751 (2017)CrossRefGoogle Scholar
  10. 10.
    J. Yu, X. Chen, Y. Wang, H. Zhou, M. Xue, Y. Xu, Z. Li, C. Ye, J. Zhang, P.A. van Aken, P.D. Lund, H. Wang, A high-performance self-powered broadband photodetector based on a \(\text{CH}_{3}\text{NH}_{3}\text{PbI}_3\) perovskite/ZnO nanorod array heterostructure. J. Mater. Chem. C 4, 7302–730 (2016)CrossRefGoogle Scholar
  11. 11.
    P. Zhao, L. Bian, L. Wang, J. Xu, A. Chang, Enhanced open voltage of \(\text{ BiFeO}_3\) polycrystalline film by surface modification of organolead halide perovskite. Appl. Phys. Lett. 105, 013901 (2014)CrossRefGoogle Scholar
  12. 12.
    M.M. Rahman, N. Uekawa, F. Shiba, Y. Okawa, M. Sakai, K. Yamamoto, K. Kudo, T. Konishi, Effect of the filtration of \(\text{PbI}_2\) solution for zinc oxide nanowire based perovskite solar cells. Jpn. J. Appl. Phys. 55, 01AE09 (2016)CrossRefGoogle Scholar
  13. 13.
    X. Zou, H. Fan, Y. Tian, S. Yan, Synthesis of \(\text{Cu}_{2}\text{O/ZnO}\) hetero-nanorod arrays with enhanced visible light-driven photocatalytic activity. CrystEngComm 16(6), 1149–1156 (2014)CrossRefGoogle Scholar
  14. 14.
    V. Singh, S. Arora, M. Arora, V. Sharma, R.P. Tandoh, Characterization of doped PEDOT: PSS and its influence on the performance and degradation of organic solar cells. Semicond. Sci. Technol. 29, 045020 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Stavytska Barba, M. Kelley, Surface-enhanced Raman study of the interaction of PEDOT: PSS with plasmonically active nanoparticles. J. Phys. Chem. C 114(14), 6822–6830 (2010)CrossRefGoogle Scholar
  16. 16.
    R. Zamiri, A. Rebelo, G. Zamiri, A. Adnani, A. Kuashal, M.S. Belsley, J.M.F. Ferreira, Far-infrared optical constants of ZnO and ZnO/Ag nanostructures. R. Soc. Chem. 4, 20902–20908 (2014)Google Scholar
  17. 17.
    D. Das, P. Mondal, Photoluminescence phenomena prevailing in c-axis oriented intrinsic ZnO thin films prepared by rf magnetron sputtering. R. Soc. Chem. 4, 35735–35743 (2014)Google Scholar
  18. 18.
    M. Ledinsky, P. Loper, B. Niesen, J. Holovsky, S. Moon, J. Yum, S. De Wolf, A. Fejfar, C. Balli, Raman spectroscopy of organicinorganic halide perovskites. J. Phys. Chem. Lett. 5, 401–406 (2015)CrossRefGoogle Scholar
  19. 19.
    C. Quarti, G. Grancini, E. Mosconi, P. Bruno, J.M. Ball, M.M. Lee, H.J. Snaith, A. Petrozza, F.D. Angelis, The Raman spectrum of the \(\text{CH}_{3}\text{NH}_{3}\text{PbI}_{3}\) hybrid perovskite: interplay of theory and experiment. J. Phys. Chem. Lett. 5, 279–284 (2014)CrossRefGoogle Scholar
  20. 20.
    Z. Liang, S. Zhang, X. Xu, N. Wang, J. Wang, Z. Bi, G. Xu, N. Yuan, J. Ding, A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions. R. Soc. Chem. 5, 60562–60569 (2015)Google Scholar
  21. 21.
    P. Pistor, A. Ruiz, A. Cabot, V. Izquierdo-Roca, Advanced Raman spectroscopy of methylammonium lead iodide: development of a non-destructive characterization methodology. Sci. Rep. 6, 35973 (2016)CrossRefGoogle Scholar
  22. 22.
    V.V. Kislyuk, O.P. Dimitriev, Nanorods and nanotubes for solar cells. J. Nanosci. Nanotechnol. 8, 131–148 (2008)CrossRefGoogle Scholar
  23. 23.
    L. Yang, A.T. Barrows, D.G. Lidzey, T. Wang, Recent progress and challenges of organometal halide perovskite solar cells. Rep. Prog. Phys. 79, 026501 (2016)CrossRefGoogle Scholar
  24. 24.
    I.G. Valls, M.L. Cantu, Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ. Sci. 2, 19–34 (2009)CrossRefGoogle Scholar
  25. 25.
    I.G. Ravirajan, A.M. Peiro, M.K. Nazeeruddin, M. Graetzel, D.D.C. Bradley, J.R. Durrant, J. Nelson, Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. J. Phys. Chem. B 110(15), 7635–7639 (2006)CrossRefGoogle Scholar
  26. 26.
    S. Agarwal, M. Seetharaman, N.K. Kumawat, A.S. Shaibal, S.K. Sarkar, D. Kabra, M.A.G. Namboothiry, P.R. Nair, On the uniqueness of ideality factor and voltage exponent of perovskite-based solar cells. J. Phys. Chem. Lett. 5(23), 4115–4121 (2014)CrossRefGoogle Scholar
  27. 27.
    H. Kanda, A. Uzum, A.K. Baranwal, T.A. Nirmal Peiris, T. Umeyama, H. Imahori, H. Segawa, T. Miyasaka, S. Ito, Analysis of sputtering damage on I-V curves for perovskite solar cells and simulation with reversed diode model. J. Phys. Chem. Lett. 120(50), 28441–28447 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and PhysicsUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.Department of PhysicsUniversity of PretoriaHatfieldSouth Africa
  3. 3.Department of Physics, School of Physical Sciences, College of Natural and Mathematical SciencesUniversity of DodomaDodomaTanzania
  4. 4.Department of PhysicsUniversity of the Free StatePhuthaditjhabaSouth Africa

Personalised recommendations