Enhanced electrical conductivity in solution processed carbon nanotubes incorporated As2S3 glass films

  • Hana Khan
  • Prabhat K. Dwivedi
  • Mushahid Husain
  • M. ZulfequarEmail author


The present paper deals with the synthesis and characterization of solution processed pure and multiwalled carbon nanotubes (MWCNTs) incorporated As2S3 glass films. As2S3 glass has been synthesized using melt quenching technique. The solutions of pure and MWCNTs containing As2S3 glass have been prepared in n-butylamine under inert atmosphere. These solutions have been used to obtain pure and MWCNTs incorporated As2S3 glass films on the glass substrates via spin coating. These films have been annealed, subsequently, to get rid of organic solvent. The morphologies of these films have been analyzed using scanning electron microscopy (SEM) which reveals the porous nature of these films. In the SEM micrographs, a very few MWCNTs are seen on the surface of the films and it is argued that most of the MWCNTs are buried in the film. Elemental and crystallographic analyses of these films have been carried out using energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) respectively. While EDS studies confirms the elemental composition of these films, XRD patterns depicts the amorphous nature of these films. Raman and Fourier transform spectroscopies have also been carried out and revealed some critical information regarding these films. Raman spectroscopy of these films indicates towards the functionalization of MWCNTs by intermediate active species which formed during annealing. dc-conductivity measurements and its analysis show that the dc-conductivity and carrier concentration of these films increases drastically with the increase in MWCNTs content in these films. The results obtained in this work may be useful for the chalcogenide glasses based electronic and optoelectronic applications such as energy harvesting and storage, photovoltaics and flexible electronics.



One of the authors (Hana Khan) is thankful to Ministry of Minority Affairs and University Grants Commission, Govt. of India for providing research support in the form of MANF (Student ID-201718-MANF-2017-18-UTT-87167).


  1. 1.
    A. Zakery, S.R. Elliott, Optical properties and applications of chalcogenide glasses: a review. J. Non-Cryst. Solids 330, 1–12 (2003)CrossRefGoogle Scholar
  2. 2.
    A.B. Seddon, Chalcogenide glasses: a review of their preparation, properties and applications. J. Non-Cryst. Solids 184, 44–50 (1995)CrossRefGoogle Scholar
  3. 3.
    S.G. Bishop, U. Strom, P.C. Taylor, Optically induced localized paramagnetic states in chalcogenide glasses. Phys. Rev. Lett. 34, 1346–1350 (1975)CrossRefGoogle Scholar
  4. 4.
    J.L. Adam, X. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Woodhead Publishing, Sawston, 2014)Google Scholar
  5. 5.
    D. Lezal, J. Pedlikova, J. Zavadil, Chalcogenide glasses for optical and photonics applications. J. Optoelectron. Adv. Mater. 6, 133–137 (2004)Google Scholar
  6. 6.
    G.C. Chern, I. Lauks, Spin coated amorphous chalcogenide films: structural characterization. J. Appl. Phys. 54, 2701–2705 (1983)CrossRefGoogle Scholar
  7. 7.
    S. Shtutina, M. Klebanov, V. Lyubin, S. Rosenwaks, V. Volterra, Photoinduced phenomena in spin-coated vitreous As2S3 and AsSe films. Thin Solid Films 261, 263–265 (1995)CrossRefGoogle Scholar
  8. 8.
    E. Hajto, P.J.S. Ewen, R.E. Belford, A.E. Owen, Interference grating fabrication in spin-coated As2S3 films. Thin Solid Films 200, 229–237 (1991)CrossRefGoogle Scholar
  9. 9.
    K. Palka, T. Syrovy, S. Schröter, S. Brückner, M. Rothhardt, M. Vlcek, Preparation of arsenic sulfide thin films for integrated optical elements by spiral bar coating. Opt. Mater. Express 4, 384–395 (2014)CrossRefGoogle Scholar
  10. 10.
    S. Song, N. Carlie, J. Boudies, L. Petit, K. Richardson, C.B. Arnold, Spin-coating of Ge23Sb7S70 chalcogenide glass thin films. J. Non-Cryst. Solids 355, 2272–2278 (2009)CrossRefGoogle Scholar
  11. 11.
    K. Tanaka, Nanostructured chalcogenide glasses. J. Non-Cryst. Solids 326, 21–28 (2003)CrossRefGoogle Scholar
  12. 12.
    Z.H. Khan, S.A. Khan, F.A. Agel, N.A. Salah, M. Husain, Chalcogenides to nanochalcogenides; exploring possibilities for future R&D, In Advances in Nanomaterials (Springer, New York, 2016), pp. 135–202CrossRefGoogle Scholar
  13. 13.
    V.K. Rai, C.B. De Araujo, Y. Ledemi, B. Bureau, M. Poulain, X.H. Zhang, Y. Messaddeq, Frequency upconversion in a Pr3+ doped chalcogenide glass containing silver nanoparticles. J. Appl. Phys. 103, 103526 (2008)CrossRefGoogle Scholar
  14. 14.
    C. Lu, J.M.P. Almeida, N. Yao, C. Arnold, Fabrication of uniformly dispersed nanoparticle-doped chalcogenide glass. Appl. Phys. Lett. 105, 261906 (2014)CrossRefGoogle Scholar
  15. 15.
    B. Mashford, J. Baldauf, T.L. Nguyen, A.M. Funston, P. Mulvaney, Synthesis of quantum dot doped chalcogenide glasses via sol-gel processing. J. Appl. Phys. 109, 094305 (2011)CrossRefGoogle Scholar
  16. 16.
    M. Ganaie, M. Zulfequar, Structural, electrical and dielectric properties of MWCNT doped SeTe glassy alloys. Mater. Chem. Phys. 177, 455–462 (2016)CrossRefGoogle Scholar
  17. 17.
    A.N. Upadhyay, R.S. Tiwari, N. Mehta, K. Singh, Enhancement of electrical, thermal and mechanical properties of carbon nanotube additive Se85Te10Ag5 glassy composites. Mater. Lett. 136, 445–448 (2014)CrossRefGoogle Scholar
  18. 18.
    S. Kumar, K. Singh, Glass transition and crystallization kinetics of Se98–xCd2Inx (x = 0, 2, 6 and 10) glassy alloys. J. Therm. Anal. Calorim. 124, 675–682 (2016)CrossRefGoogle Scholar
  19. 19.
    T. Kitano, M. Ogushi, Carbon nanotube dispersion liquid and transparent conductive film using same, U.S. Patent Application 11/916,869, filed 5 Feb 2009Google Scholar
  20. 20.
    Y. Zha, S. Fingerman, S.J. Cantrell, C.B. Arnold, Pore formation and removal in solution-processed amorphous arsenic sulfide films. J. Non-Cryst. Solids 369, 11–16 (2013)CrossRefGoogle Scholar
  21. 21.
    M. Waldmann, J.D. Musgraves, K. Richardson, C.B. Arnold, Structural properties of solution processed Ge23Sb7S70 glass materials. J. Mater. Chem. 22, 17848–17852 (2012)CrossRefGoogle Scholar
  22. 22.
    H. Yuvaraj, Y. Tae Jeong, W.K. Lee, K.T. Lim., Synthesis of MWNT/PEDOT composites for the application of organic light emitting diodes. Mol. Cryst. Liq. Cryst. 514, 36–366 (2009)Google Scholar
  23. 23.
    Y. Xu, H. Xu, J. Yan, H. Li, L. Huang, Q. Zhang, C. Huang, H. Wan, A novel visible-light-response plasmonicphotocatalyst MWCNT/Ag/AgBr and its photocatalytic properties. Phys. Chem. Chem. Phys. 15, 5821–5830 (2013)CrossRefGoogle Scholar
  24. 24.
    J. Yu, J. Fan, B. Cheng, Dye-sensitized solar cells based on anatase TiO2 hollow spheres/carbon nanotube composite films. J. Power Sources 196, 7891–7898 (2011)CrossRefGoogle Scholar
  25. 25.
    S. Slang, K. Palka, L. Loghina, A. Kovalskiy, H. Jain, M. Vlcek, Mechanism of the dissolution of As–S chalcogenide glass in n-butylamine and its influence on the structure of spin coated layers. J. Non-Cryst. Solids 426, 125–131 (2015)CrossRefGoogle Scholar
  26. 26.
    M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005)CrossRefGoogle Scholar
  27. 27.
    R. Graupner, Raman spectroscopy of covalently functionalized single-wall carbon nanotubes. J. Raman Spectrosc. 38, 673–683 (2007)CrossRefGoogle Scholar
  28. 28.
    St. Thomas, Spectroscopic Tools, Accessed Dec 2017
  29. 29.
    G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Chart, 3rd edn. (Wiley, Hoboken, 2001)Google Scholar
  30. 30.
    M. Hesse, H. Meier, B. Zeeh, Spectroscopic Methods in Organic Chemistry (Georg ThiemeVerlag, Stuttgart, 2005)Google Scholar
  31. 31.
    Bruker Almanac, Accessed Dec 2017
  32. 32.
    R. Singh, M. Zulfequar, A. Kumar, P.K. Dwivedi, Electrical and optical properties of solution phase deposited As2S3 and As2Se3 chalcogenide thin films: a comparative study with thermally deposited films. J. Non-Cryst. Solids 476, 46–51 (2017)CrossRefGoogle Scholar
  33. 33.
    A.V. Legin, E.A. Bychkov, Y.G. Vlasov, Thin-layer chemical sensors based on chemically deposited and modified chalcogenide glasses., Sens Actuators B 15, 184–187 (1993)CrossRefGoogle Scholar
  34. 34.
    A.N. Upadhyay, R.S. Tiwari, N. Mehta, K. Singh, Enhancement of electrical, thermal and mechanical properties of carbon nanotube additive Se 85 Te 10 Ag 5 glassy composites. Mater. Lett. 136, 445–448 (2014)CrossRefGoogle Scholar
  35. 35.
    E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 0903–0922 (1970)CrossRefGoogle Scholar
  36. 36.
    A. Dahshan, P. Sharma, K.A. Aly, Semiconducting quaternary chalcogenide glasses as new potential thermoelectric materials: an As–Ge–Se–Sb case. Dalton Trans. 44, 14799–14804 (2015)CrossRefGoogle Scholar
  37. 37.
    J. Fan, M. Wan, D. Zhu, B. Chang, Z. Pan, S. Xie, Synthesis and properties of carbon nanotube-polypyrrole composites. Synth. Methods 102, 1266–1267 (1999)CrossRefGoogle Scholar
  38. 38.
    J.M. Marulanda, A. Srivastava, Carrier density and effective mass calculations in carbon nanotubes, Phys. Status Solidi B 245, 2558–2562 (2008)CrossRefGoogle Scholar
  39. 39.
    S.H. Lee, D. Khim, Y. Xu, J. Kim, W.T. Park, D.Y. Kim, Y.Y. Noh, Simultaneous improvement of hole and electron injection in organic field-effect transistors by conjugated polymer-wrapped carbon nanotube interlayers. Sci. Rep. 5, 10407 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hana Khan
    • 1
  • Prabhat K. Dwivedi
    • 2
  • Mushahid Husain
    • 1
  • M. Zulfequar
    • 1
    Email author
  1. 1.Department of PhysicsJamia Millia IslamiaNew DelhiIndia
  2. 2.Centre for NanosciencesIndian Institute of TechnologyKanpurIndia

Personalised recommendations