Spectroscopic studies on the influence of UV irradiation on linear and nonlinear optical properties of 8-hydroxy quinoline based azo dye

  • Eman A. GamlEmail author


-5-Sulfono-7-(4-Cloro phenyl azo)-8-Hydroxy Quinoline (SAHQ-Cl) is an organic azo compound. It has amorphous thin film structure for the pristine film and partially crystallizes upon UV irradiation. The effect of UV irradiation on the optical constants of SAHQ-Cl is studied using spectrophotometric measurements in the wavelength range 200–2500 nm. UV irradiation increased the band gap from 2.44 to 2.8 eV, and increased the fluorescence emission intensity. Also, UV irradiation remarkably changed the material dispersion parameters. The nonlinear optical parameters are calculated and found to increase upon increasing UV irradiation time. The chromaticity diagram of SAHQ-Cl showed that it can give green color emission.


  1. 1.
    C. Santos Fda, P. Abreu, H.C. Castro, I.C. Paixao, C.C. Cirne-Santos, V. Giongo, J.E. Barbosa, B.R. Simonetti, V. Garrido, D.C. Bou-Habib, O. Silva Dde, P.N. Batalha, J.R. Temerozo, T.M. Souza, C.M. Nogueira, A.C. Cunha, C.R. Rodrigues, V.F. Ferreira, M.C. de Souza, Synthesis, antiviral activity and molecular modeling of oxoquinoline derivatives. Bioorg. Med. Chem. 17, 5476–5481 (2009)CrossRefGoogle Scholar
  2. 2.
    D. Drygin, A. Siddiqui-Jain, S. O’Brien, M. Schwaebe, A. Lin, J. Bliesath, C.B. Ho, C. Proffitt, K. Trent, J.P. Whitten, J.K. Lim, D. Von Hoff, K. Anderes, W.G. Rice, Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. Cancer Res. 69, 7653–7661 (2009)CrossRefGoogle Scholar
  3. 3.
    A. Darque, A. Dumetre, S. Hutter, G. Casano, M. Robin, C. Pannecouque, N. Azas, Synthesis and biological evaluation of new heterocyclic quinolinones as anti-parasite and anti-HIV drug candidates. Bioorg. Med. Chem. Lett. 19, 5962–5964 (2009)CrossRefGoogle Scholar
  4. 4.
    D.T. Chung, C.Y. Tsai, S.J. Chen, L.W. Chang, C.H.R. King, C.H. Hsu, K.M. Chiu, H.C. Tan, Y.T. Chang, M.C. Hsu, Multiple-dose safety, tolerability, and pharmacokinetics of oral nemonoxacin (TG-873870) in healthy volunteers. Antimicrob. Agents Chemother. 54, 411–417 (2009)CrossRefGoogle Scholar
  5. 5.
    A.S.A. Zidan, Studies on some transition metal mixed ligands complexes glycinyldithiocarbamate and 8-hydroxyquinoline moiety. J. Therm. Anal. Calorim. 68, 1045–1059 (2002)CrossRefGoogle Scholar
  6. 6.
    J. Luo, C. Yang, J. Zheng, J. Ma, L. Liang, M. Lu, Synthesis and photophysics properties of novel bipolar copolymers containing quinoline aluminum moieties and carbazole segments. Eur. Polymer J. 47, 385–393 (2011)CrossRefGoogle Scholar
  7. 7.
    Q. Mei, N. Du, M. Lu, Synthesis, characterization and thermal properties of metaloquinolate-containing polymers. Eur. Polymer J. 43, 2380–2386 (2007)CrossRefGoogle Scholar
  8. 8.
    A. Mishra, N. Periasamy, M.P. Patankar, K.L. Narasimhan, Synthesis and characterisation of soluble aluminium complex dyes based on 5-substituted-8-hydroxyquinoline derivatives for OLED applications. Dyes Pigm. 66, 89–97 (2005)CrossRefGoogle Scholar
  9. 9.
    M.R. Balboul, Optical effects induced by gamma and UV irradiation in chalcogenic glass. Radiat. Meas. 43, 1360–1364 (2008)CrossRefGoogle Scholar
  10. 10.
    E.-H. Byun, J.-H. Kim, N.-Y. Sung, J. Choi, S.-T. Lim, K.-H. Kim, H.-S. Yook, M.-W. Byun, J.-W. Lee, Effects of gamma irradiation on the physical and structural properties of β-glucan. Radiat. Phys. Chem. 77, 781–786 (2008)CrossRefGoogle Scholar
  11. 11.
    C.S. Menon, C.C. REGIMOL, Effect of annealing and γ irradiation on tin phthalocyanine thin films. Mater. Sci. Poland 25, 649–655 (2007)Google Scholar
  12. 12.
    T. Sharma, S. Aggarwal, S. Kumar, V.K. Mittal, P.C. Kalsi, V.K. Manchanda, Effect of gamma irradiation on the optical properties of CR-39 polymer. J. Mater. Sci. 42, 1127–1130 (2007)CrossRefGoogle Scholar
  13. 13.
    H.M. El-Mallah, N.A. El-Ghamaz, M.A. Waly, Influence of UV irradiation on optical properties of thermally evaporated 4,4′-(1E, 1′E)-2,2′-(2-aminopyrimidine-4, 6-diyl)bis(ethene-2,1-diyl)bis(N,N- dimethylaniline) thin films. J. Phys. D 43, 455407 (2010)CrossRefGoogle Scholar
  14. 14.
    M.D. Migahed, H.M. Zidan, Influence of UV-irradiation on the structure and optical properties of polycarbonate films. Curr. Appl. Phys. 6, 91–96 (2006)CrossRefGoogle Scholar
  15. 15.
    H.M. Zeyada, N.A. El-Ghamaz, M.I. Youssif, E.A. Gaml, Effect of annealing and UV irradiation on structural and optical properties of 6-(3,4 Dimethoxyphenyl)-1-methyl-3-oxo-2-phenyl-2,3-dihydro1Hpyrazolo[4,3-b]-5-carbonitrile thin films. Opt. Mater. 69, 392–400 (2017)CrossRefGoogle Scholar
  16. 16.
    N.A. El-Ghamaz, A.Z. El-Sonbati, L.S. Serag, Linear and nonlinear optical properties of new azo aminosalicylic acid derivatives. J. Lumin. 194, 507–518 (2018)CrossRefGoogle Scholar
  17. 17.
    N.A. El-Ghamaz, M.A. Diab, A.Z. El-Sonbati, O.L. Salem, D.C. electrical conductivity and conduction mechanism of some azo sulfonyl quinoline ligands and uranyl complexes. Spectrochim. Acta A 83, 61–66 (2011)CrossRefGoogle Scholar
  18. 18.
    H.M. Zeyada, N.A. El-Ghamaz, E.A. Gaml, Effect of substitution group variation on the optical functions of -5-sulfono-7-(4-x phenyl azo)-8-hydroxy quinoline thin films. Curr. Appl. Phys. 13, 1960–1966 (2013)CrossRefGoogle Scholar
  19. 19.
    H.M. Zeyada, N.A. El-Ghamaz, E.A. Gaml, Alternating current conductivity and dielectrical properties of -5-sulfono-7-(4-x phenyl azo)-8-hydroxy quinoline derivatives. Physica B 519, 76–81 (2017)CrossRefGoogle Scholar
  20. 20.
    A. Abele’s, Physics of Thin films (Academic Press, London, 1971)Google Scholar
  21. 21.
    V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials (Springer, New York, 2009)Google Scholar
  22. 22.
    J. Bardeen, F. Blatt, L. Hall, Photoconductivity Conference (Wiley, New York, 1956), p. 146Google Scholar
  23. 23.
    G.A. Kumar, J. Thomas, N. George, B.A. Kumar, P. Radhakrishnan, V.P.N. Nampoori, C.P.G. Vallabhan, optical absorption studies of free (H2 P c) and rare earth (RePc) phthalocyanine doped borateglasses. Phys. Chem. Glasses 41, 89–93 (2000)Google Scholar
  24. 24.
    N.A. El-Ghamaz, E.M. El-Menyawy, M.A. Diab, A.A. El-Bindary, A.Z. El-Sonbati, S.G. Nozha, Optical and dielectrical properties of azo quinoline thin films. Solid State Sci. 30, 44–54 (2014)CrossRefGoogle Scholar
  25. 25.
    J. David Musgraves, N. Carlie, G. Guery, P. Wachtel, L. Petit, K. Richardson, Chalcogenide Glasses and their Photosensitivity: Engineered Materials for Device Applications, Optics InfoBase Conference Papers, (2010)Google Scholar
  26. 26.
    A.V. Kolobov, Photo-induced Metastability in Amorphous Semiconductors (Wiley, Hoboken, 2006)Google Scholar
  27. 27.
    M.S. Iovu, A.M. Andriesh, Optical properties of As-Se amorphous composites. J. Optoelectron. Adv. Mater. 8, 2080–2085 (2006)Google Scholar
  28. 28.
    H. Ticha, L. Tichy, P. Nagels, R. Callaerts, R. Mertens, M. Vlcˇek, Optical properties of amorphous As–Se and Ge–As–Se thin films. Mater. Lett. 39, 122–128 (1999)CrossRefGoogle Scholar
  29. 29.
    K. Antoine, H. Jain, M. Vlcek, Optical spectroscopy of a-As2Se3 under in situ laser irradiation. J. Non-Cryst. Solids 352, 595–600 (2006)CrossRefGoogle Scholar
  30. 30.
    S.H. Wemple, M. DiDomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338–1351 (1971)CrossRefGoogle Scholar
  31. 31.
    H.M. Zeyada, M.M. El-Nahass, M.M. El-Shabaan, Gamma-ray irradiation induced structural and optical constants changes of thermally evaporated neutral red thin films. J. Mater. Sci. 47, 493–502 (2011)CrossRefGoogle Scholar
  32. 32.
    R.S. Vithanage, K. Soroka, D.A. Phillips, B. Walker, P.K. Dasgupta, Fluorescence properties of metal complexes of 8-hydroxyquinoline-5-sulfonic acid and chromatographic applications. Anal. Chem. 59, 629–636 (1987)CrossRefGoogle Scholar
  33. 33.
    E. Gondek, I.V. Kityk, A. Danel, A. Wisla, M. Pokladko, J. Sanetra, B. Sahraoui, Electroluminescence of several pyrazoloquinoline and quinoksaline derivatives. Mater. Lett. 60, 3301–3306 (2006)CrossRefGoogle Scholar
  34. 34.
    K. Rurack, A. Danel, K. Rotkiewicz, D. Grabka, M. Spieles, W. Rettig, 1,3-Diphenyl-1H-pyrazolo[3,4-b]quinoline: a versatile fluorophore for the design of brightly emissive molecular sensors. Organ. Lett. 4, 4647–4650 (2002)CrossRefGoogle Scholar
  35. 35.
    M. Linping, H. Zhiqun, W. Jing, H. Guanbao, W. Yongsheng, J. Xiping, A. Danel, E. Kulig, A color stable blue light-emitting device using a pyrazolo[3,4-b]quinoline derivative as an emitter. IEEE Photonics Technol. Lett. 20, 1781–1783 (2008)CrossRefGoogle Scholar
  36. 36.
    M. Mac, T. Uchacz, T. Wrobel, A. Danel, E. Kulig, New fluorescent sensors based on 1H-pyrazolo[3,4-b] quinoline skeleton. J. Fluoresc. 20, 525–532 (2010)CrossRefGoogle Scholar
  37. 37.
    R. Chauhan, A.K. Srivastava, A. Tripathi, K.K. Srivastava, Linear and nonlinear optical changes in amorphous As2Se3 thin film upon UV exposure. Prog. Nat. Sci. 21, 205–210 (2011)CrossRefGoogle Scholar
  38. 38.
    J.J. Wynne, Optical third-order mixing in GaAs, Ge, Si, and InAs. Phys. Rev. 178, 1295–1303 (1969)CrossRefGoogle Scholar
  39. 39.
    C.C. Wang, Empirical relation between the linear and the third-order nonlinear optical susceptibilities. Phys. Rev. B 2, 2045–2048 (1970)CrossRefGoogle Scholar
  40. 40.
    L. Tichy, H. Tichá, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4, 381–386 (2002)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceDamietta UniversityNew DamiettaEgypt

Personalised recommendations