Advertisement

La2−xEuxMo2O9 (0 ≤ x ≤ 0.6) solid solution microcrystals: facile hydrothermal derived synthesis, microstructures and luminescence properties

  • Yanmei Li
  • Ruofan Pu
  • Lin Wen
  • Xu Peng
  • Zhanglei Ning
  • Bo Wu
  • Yan Zhao
  • Xin Lai
  • Jian Bi
  • Daojiang Gao
Article
  • 74 Downloads

Abstract

La2−xEuxMo2O9 (0 ≤ x ≤ 0.6) solid solution microcrystals have been successfully fabricated by a facile hydrothermal derived synthesis process (i.e. the precursors were obtained via hydrothermal treat at 180 °C for 24 h and then calcined at 600 °C for 5 h). X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence excitation and emission spectra (PL) and photoluminescence decay curves were used to characterize La2−xEuxMo2O9 samples. The effects of the Eu3+ ions concentration on the luminescence of the La2−xEuxMo2O9 microcrystals were also investigated in detail. The results show that the obtained La2−xEuxMo2O9 microcrystals are cubic phase continuous solid solution, and all can be efficiently excited by 335 nm ultraviolet and 464 nm blue light, exhibiting the strong red emission at 615 nm of Eu3+ ion. The obtained La2−xEuxMo2O9 microcrystals are promising red-emitting phosphors pumped by near-UV or blue light for the white light emitting diodes (WLEDs).

Notes

Acknowledgements

This work is supported by the National Science Foundation of China (NSFC, No. 51551202), the Scientific Research Fund of Sichuan Provincial Education Department of Sichuan Province (Nos. 16TD0007, 18ZA0408), the Applied Basic Research Fund of Science & Technology Department of Sichuan Province (No. 2015JY0274).

References

  1. 1.
    X.Q. Shen, L.L. Li, F.L. He, X.X. Meng, F.Z. Song, Effects of doped-Li+ and -Eu3+ ions content on structure and luminescent properties of LixSr1−2x(MoO4): Eu3+ x red-emitting phosphors for white LEDs. Mater. Chem. Phys. 132, 471–475 (2012)Google Scholar
  2. 2.
    H.Q. Zuo, Y. Liu, J.Y. Li, X.L. Shi, S.Y. Ma, M.Z. Zhao, Enhancement of red emission in KLa(MoO4)2: Eu3+, Bi3+ phosphor for WLEDs. Ceram. Int. 41, 14834–14838 (2015)Google Scholar
  3. 3.
    V. Mahalingam, J. Thirumalai, R. Krishnan, R. Chandramohan, Potential visible light emitting rare-earth activated Ca0.5Y1−x(MoO4)2: xRE3+ (RE = Pr, Sm, Eu, Tb, Dy) phosphors for solid state lighting applications. J. Mater. Sci. 26, 842–852 (2015)Google Scholar
  4. 4.
    S.L. Dong, S. Ye, L.L. Wang, X.Y. Chen, S.B. Yang, Y.J. Zhao, J.G. Wang, X.P. Jing, Q.Y. Zhang, Gd3B(W,Mo)O9: Eu3+ red phosphor: from structure design to photoluminescence behavior and near-UV white-LEDs performance. J. Alloys Compd. 610, 402–408 (2014)CrossRefGoogle Scholar
  5. 5.
    F.B. Xiong, H.F. Lin, L.J. Wang, X.G. Meng, W.Z. Zhu, White light emission in host-sensitized Dy3+-single-doped NaIn(WO4)2 phosphors. J. Phys. B 459, 41–45 (2015)Google Scholar
  6. 6.
    Y. Liu, Y. Wang, L.P. Wang, Y.Y. Gu, S.H. Yu, Z.G. Lu, R. Sun, General synthesis of LiLn(MO4)2: Eu3+ (Ln = La, Eu, Gd, Y; M = W, Mo) nanophosphors for near UV-type LEDs. RSC Adv. 4, 4754–4762 (2014)Google Scholar
  7. 7.
    V.V. Sinitsyn, B.S. Redkin, A.P. Kiselev, S.Z. Shmurak, N.N. Kolesnikov, V.V. Kveder, E.G. Ponyatovsky, “White” phosphor on the basis of Gd2(MoO4)3: Tm, Tb, Eu single crystal. Solid State Sci. 46, 80–83 (2015)CrossRefGoogle Scholar
  8. 8.
    Z.J. Zhang, X.Y. Chen, Sb2MoO6, Bi2MoO6, Sb2WO6, and Bi2WO6 flake-like crystals: generalized hydrothermal synthesis and the applications of Bi2WO6 and Bi2MoO6 as red phosphors doped with Eu3+ ions. Mater. Sci. Eng. B 209, 10–16 (2016)Google Scholar
  9. 9.
    G.Q. Wang, X.H. Gong, Y.J. Chen, J.H. Huang, Y.F. Lin, Z.D. Luo, Y.D. Huang, Novel red phosphors KBaEu(XO4)3 (X = Mo, W) show high color purity and high thermostability from a disordered chained structure. Dalton Trans. 46, 6776–6784 (2017)Google Scholar
  10. 10.
    Z.G. Xia, J.F. Sun, H.Y. Du, D.M. Chen, J.Y. Sun, Luminescence properties of double-perovskite Sr2Ca1−2xEuxNaxMoO6 red-emitting phosphors prepared by the citric acid-assisted sol-gel method. J. Mater. Sci. 45, 1553–1559 (2010)CrossRefGoogle Scholar
  11. 11.
    A.A. Kaminskii, A.V. Butashin, H.J. Eichler, D. Grebe, R. Macdonald, K. Uelda, H. Nishioka, W. Odagima, M. Tateno, J. Song, M. Musha, S.N. Bagaev, A.A. Pavlyuk, Orthorhombic ferroelectric and ferroelastic Gd2(MoO4)3 crystal a new many-purposed nonlinear and optical material: efficient multiple stimulated Raman scattering and CW and tunable second harmonic generation. Opt. Mater. 7, 59–73 (1997)CrossRefGoogle Scholar
  12. 12.
    J.A. Alonso, F. Rivillas, M.J. Martínez-Lope, V. Pomjakushin, Preparation and structural study from neutron diffraction data of R2MoO6 (R = Dy, Ho, Er, Tm, Yb, Y). J. Solid State Chem. 177, 2470–2476 (2004)CrossRefGoogle Scholar
  13. 13.
    L. Malavasi, H.J. Kim, S.J.L. Billinge, T. Proffen, C. Tealdi, G. Flor, Nature of the monoclinic to cubic phase transition in the fast oxygen ion conductor La2Mo2O9 (LAMOX). J. Am. Chem. Soc. 129, 6903–6907 (2007)CrossRefGoogle Scholar
  14. 14.
    F. Baur, F. Glocker, T. Jüstel, Photoluminescence and energy transfer rates and efficiencies in Eu3+ activated Tb2Mo3O12. J. Mater. Chem. C. 3, 2054–2064 (2015)CrossRefGoogle Scholar
  15. 15.
    R. Krishnan, J. Thirumalai, V. Mahalingam, S. Mantha, M. Lavany, Synthesis, luminescence and photometric characteristics of Ca0.5La(MoO4)2: Ln3+ (Ln = Eu, Tb, Dy) phosphors. Mater. Chem. Phys. 162, 41–49 (2015)CrossRefGoogle Scholar
  16. 16.
    L.L. Li, J.J. Zhang, W.W. Zi, S.C. Gan, G.J. Ji, H.F. Zou, X.C. Xu, Synthesis and luminescent properties of high brightness MRE(MoO4)2: Eu3+ (M = Li, Na, K; RE = Gd, Y, Lu) red phosphors for white LEDs. Solid State Sci. 29, 58–65 (2014)Google Scholar
  17. 17.
    S. Basu, P. Sujatha Devi, H.S. Maiti, N.R. Bandyopadhyay, Synthesis, thermal and electrical analysis of alkaline earth doped lanthanum molybdate. Solid State Ion. 231, 87–93 (2013)CrossRefGoogle Scholar
  18. 18.
    K.M. Ok, Y.J. Ohishi, H. Muta, K. Kurosaki, S. Yamanaka, Effect of Ba concentration on phase stability and mechanical and thermal properties of La2Mo2O9. J. Eur. Ceram. Soc. 37, 281–288 (2017)CrossRefGoogle Scholar
  19. 19.
    H. Liu, J.C. Zhang, Z.Y. Wen, J.D. Han, Synthesis, sinterability, conductivity and reducibility of K+ and W6+ double doped La2Mo2O9. Solid State Ion. 276, 90–97 (2015)Google Scholar
  20. 20.
    T. Paul, A. Ghosh, Structure and vibrational properties of La2−xBixMo2O9 (0.05 ≤ x ≤ 0.4) oxygen ion conductors. J. Alloys Compd. 613, 146–152 (2014)CrossRefGoogle Scholar
  21. 21.
    S. Georges, F. Goutenoire, F. Altorfer, D. Sheptyakov, F. Fauth, E. Suard, P. Lacorre, Thermal, structural and transport properties of the fast oxide-ion conductors La2−xRxMo2O9 (R = Nd, Gd, Y). Solid State Ion. 161, 231–241 (2003)CrossRefGoogle Scholar
  22. 22.
    L. Ge, K. Guo, L.C. Guo, Sinterability, reducibility, and electrical conductivity of fast oxide-ion conductors La1.8R0.2MoWO9 (R = Pr, Nd, Gd and Y). Ceram. Int. 41, 10208–10215 (2015)Google Scholar
  23. 23.
    B.J. Yan, Z.H. Ren, X.M. Hou, Thermal and transport properties of La2−xNdxMo2O9. J. Rare Earths 34, 1024–1031 (2016)Google Scholar
  24. 24.
    E. Gaëtan Buvat, O. Quarez, Joubert, Influence of La2Mo2O9 on the sintering behavior and electrochemical properties of gadolinium-doped ceria. Ceram. Int. 43, 10137–10143 (2017)Google Scholar
  25. 25.
    Q. He, M.Z. Sun, X.J. Kuang, B.L. Huang, S. Ye, Q.Y. Zhang, Unraveling the correlation between oxide-ion motion and upconversion luminescence in β-La2Mo2O9:Yb3+, Er3+ derivatives. J. Mater. Chem. C. 5, 10965–10970 (2017)Google Scholar
  26. 26.
    S.K. Shi, H.L. Gong, J.J. Wu, M. Luo, J. Zhou,Synthesis of Eu3+-activated La2Mo2O9 powder phosphors by surfactant-assisted hydrothermal approach. J. Am. Ceram. Soc. 95, 3878–3882 (2012)Google Scholar
  27. 27.
    Y. Li, X.F. Jiang, F.Q. Tao, Y.M. Yang, Q.Y. Zhang, S. Ye, Detection of oxide-ion and oxygen vacancy swapping via upconversion luminescence in La2Mo2O9: Yb3+, Er3+. J. Mater. Chem. C. 4, 7286–7293 (2016)Google Scholar
  28. 28.
    H.L. Gong, S.K. Shi, J. Zhou, Enhanced red luminescence of Eu3+ and R3+ -doped La2Mo2O9 phosphors under blue light excitation. Curr. Appl. Phys. 11, 551–554 (2011)Google Scholar
  29. 29.
    D.D. Zhang, S.K. Shi, M. Luo, J. Zhou, Solid state reaction preparation and enhanced red luminescence of S-doped La2Mo2O9:Pr3+ phosphors. Ceram. Int. 39, 6299–6302 (2013)Google Scholar
  30. 30.
    M. Guzik, M. Bieza, E. Tomaszewicz, Y. Guyot, E. Zych, G. Boulon, Nd3+ dopant influence on the structural and spectroscopic properties of microcrystalline La2Mo2O9 molybdate. Opt. Mater. 41, 21–31 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Takai, Y. Doi, S. Torii, J.R. Zhang, T.Y.S. Panca Putra, P. Miao, T. Kamiyama, T. Esaka, Structural and electrical properties of Pb-substituted La2Mo2O9 oxide ion conductors. Solid State Ion. 238, 36–43 (2013)CrossRefGoogle Scholar
  32. 32.
    V.I. Voronkova, E.P. Kharitonova, E.I. Orlova, D.A. Belov, Extending the family of oxygen ion conductors isostructural with La2Mo2O9. J. Solid State Chem. 196, 45–51 (2012)CrossRefGoogle Scholar
  33. 33.
    X.Y. Cao, P.Q. Long, Y. Shen, M.X. Yang, H. Lin, X.T. Liu, W. Zhang, X.T. Huang, Z.G. Yi, Electric relaxation studies on La2−xNdxMo2O9 oxide-ion-conductor ceramics. J. Electrochem. Soc. 163, F1564–F1571 (2016)Google Scholar
  34. 34.
    H. Sellemi, S. Coste, A.B. Ali, R. Retoux, L.S. Smiri, P. Lacorre, Synthesis of La2Mo2O9 powders with nanodomains using polyol procedure. Ceram. Int. 39, 8853–8859 (2013)CrossRefGoogle Scholar
  35. 35.
    T. Saradha, A. Subramania, K. Balakrishnan, S. Muzhumathi, Microwave-assisted combustion synthesis of nanocrystalline Sm-doped La2Mo2O9 oxide-ion conductors for SOFC application. Mater. Res. Bull. 68, 320–325 (2015)CrossRefGoogle Scholar
  36. 36.
    B.R. Li, Y. Yang, B. Li, Q. Liu, Y.S. Zhang, N.Q. Zhang, X.Z. Du, Low temperature synthesis of hollow La2Mo2O9 spheres by the molten salt solvent method. CrystEngComm. 15, 6905–6910 (2013)Google Scholar
  37. 37.
    B.R. Li, Y. Yang, Molten salt solvent synthesis of La2Mo2O9 nano-wires by controlling the subsequent calcinations process. Mater. Chem. Phys. 147, 735–743 (2014)Google Scholar
  38. 38.
    J. Yu, K.K. Huang, L. Yuan, S.H. Feng, Hydrothermal syntheses and photoluminescence properties of rare-earth tungstate as near ultraviolet type red phosphors. New J. Chem. 38, 1441–1445 (2014)Google Scholar
  39. 39.
    L. Zhang, J.S. Dai, L. Lian, Y. Liu, Dumbbell-like BaWO4 microstructures: surfactant-free hydrothermal synthesis, growth mechanism and photoluminescence property. Superlattices Microstruct. 54, 87–95 (2013)CrossRefGoogle Scholar
  40. 40.
    L.L. Li, L. Liu, W.W. Zi, H. Yu, S.C. Gan, G.J. Ji, H.F. Zou, X.C. Xu, Synthesis and luminescent properties of high brightness MLa(WO4)2: Eu3+ (M = Li, Na, K) and NaRE(WO4)2: Eu3+ (RE = Gd, Y, Lu) red phosphors. J. Lumin. 143, 14–20 (2013)Google Scholar
  41. 41.
    P.L. Shi, Z.G. Xia, M.S. Molokeevc, V.V. Atuchin, Crystal chemistry and luminescence properties of red-emitting CsGd1−xEux(MoO4)2 solid-solution phosphors. Dalton Trans. 43, 9669–9676 (2014)Google Scholar
  42. 42.
    J.S. Sun, T.T. Yu, X.P. Li, J.S. Zhang, L.H. Cheng, H.Y. Zhong, Y. Tian, R.N. Hua, B.J. Chen, Co-precipitation synthesis, structural and morphological characterization, and luminescence properties of Dy3+ doped nanocrystal Gd2(WO4)3 and Gd2WO6 phosphors. J. Phys. Chem. Solids 73, 465–470 (2012)Google Scholar
  43. 43.
    R. Karthiga, B. Kavitha, M. Rajarajan, A. Suganthi, Photocatalytic and antimicrobial activity of NiWO4 nanoparticles stabilized by the plant extract. Mater. Sci. Semicond. Process. 40, 123–129 (2015)CrossRefGoogle Scholar
  44. 44.
    Q.H. Zenga, P. He, M. Pang, H.B. Liang, M.L. Gong, Q. Su, Sr9R2−xEuxW4O24 (R = Gd and Y) red phosphor for near-UV and blue InGaN-based white LEDs. Solid State Commun. 149, 880–883 (2009)Google Scholar
  45. 45.
    P. Du, J.S. Yu, Synthesis and luminescent properties of red-emitting Eu3+-activated Ca0.5Sr0.5MoO4 phosphors. J. Mater. Sci. 51, 5427–5435 (2016)Google Scholar
  46. 46.
    Y.C. Chang, C.H. Liang, S.A. Yan, Y.S. Chang, Synthesis and photoluminescence characteristics of high color purity and brightness Li3Ba2Gd3(MoO4)8: Eu3+ red phosphors. J. Phys. Chem. C 114, 3645–3652 (2010)Google Scholar
  47. 47.
    A. Durairajan, D. Balaji, K. KaviRasu, S. MoorthyBabu, Y. Hayakawa, M.A. Valente, Sol-gel synthesis and photoluminescence studies on colour tuneable Dy3+/Tm3+ co-doped NaGd(WO4)2 phosphor for white light emission. J. Lumin. 157, 357–364 (2015)CrossRefGoogle Scholar
  48. 48.
    B. Han, J. Zhang, Z.M. Wang, Y.Y. Liu, H.Z. Shi, Investigation on the concentration quenching and energy transfer of red-light-emitting phosphor Y2MoO6:Eu3+. J. Lumin. 149, 150–154 (2014)CrossRefGoogle Scholar
  49. 49.
    Y.T. Li, X.H. Liu, Photoluminescence properties and energy transfer of KY1−xLnx (MoO4)2 (Ln = Sm3+, Eu3+) red phosphors. J. Lumin. 151, 52–56 (2014)CrossRefGoogle Scholar
  50. 50.
    Z.J. Wang, J.P. Zhong, H.X. Jiang, J. Wang, H.B. Liang, Controllable synthesis of NaLu(WO4)2: Eu3+ microcrystal and luminescence properties for LEDs. Cryst. Growth Des. 14, 3767–3773 (2014)Google Scholar
  51. 51.
    D.Q. Hu, W.L. Huan, Y. Wang, Y.D. Wang, Preparation and investigation of Eu3+-activated ZnMoO4 phosphors for white LED. J. Mater. Sci. 26, 7290–7294 (2015)Google Scholar
  52. 52.
    Z.H. Xu, C.X. Li, G.G. Li, R.T. Chai, C. Peng, D.M. Yang, J. Lin, Self-assembled 3D urchin-Like NaY(MoO4)2: Eu3+/Tb3+ microarchitectures: hydrothermal synthesis and tunable emission colors. J. Phys. Chem. C 114, 2573–2582 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yanmei Li
    • 1
  • Ruofan Pu
    • 1
  • Lin Wen
    • 1
  • Xu Peng
    • 1
  • Zhanglei Ning
    • 1
  • Bo Wu
    • 2
  • Yan Zhao
    • 1
  • Xin Lai
    • 1
  • Jian Bi
    • 1
  • Daojiang Gao
    • 1
  1. 1.College of Chemistry and Materials ScienceSichuan Normal UniversityChengduChina
  2. 2.Sichuan Province Key Laboratory of Information Materials and Devices ApplicationChengdu University of Information TechnologyChengduChina

Personalised recommendations