Advertisement

Comparative study of interfacial interaction between aromatic and aliphatic functional group in solder wettability

  • Norliza Ismail
  • Roslina Ismail
  • Azman Jalar
  • Ghazali Omar
  • Emee Marina Salleh
  • Norinsan Kamil
  • Irman Abdul Rahman
Article
  • 4 Downloads

Abstract

The effect of using different flux on wettability of Sn-Ag-Cu lead free solder were investigated. In this study, solder paste Sn-3.0Ag-0.5Cu (SAC305) was used by introducing two types of no-clean flux with different ingredients. The solders namely as SAC305-A and SAC305-B respectively. Then, the both solder paste manually printed on printed circuit board (PCB) using stencil printing and then reflowed at 260 °C temperature. Wettability of Sn-Ag-Cu solder using different flux was determined by contact angle measurement using Alicona ® IFM software. Results show the SAC305-A solder alloys have a good and better wettability with lower contact angle compared to SAC305-B. Functional groups of both solder flux was identified by FTIR analysis. Meanwhile XPS analysis was performed in characterizing the studied fluxes. It was found that no-clean flux solder with aromatic functional groups showed lower contact angle value and better wettability than aliphatic contained functional groups.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of this work from Ministry of Higher Education of Malaysia through My Brain 15 PHD scholarship programme and Universiti Kebangsaan Malaysia (UKM) for research grants GGPM-2017-048 and DPP-2015-042.

References

  1. 1.
    R. Nelson, C.F. Ana, F.T. Senhorinha, S. Delfim, C.T. Jose, C. Fatima, M. Francisco, Contact angle measurement of SAC 305 solder: numerical and experimental approach. J. Mater. Sci. 27(9), 8941–8950 (2016)Google Scholar
  2. 2.
    F.A. Mario, L.A. Viola, Contact angle measurements of Sn-Ag and Sn-Cu lead-free solders on copper substrates. J. Electron. Mater. 33(12), 1452–1458 (2004)CrossRefGoogle Scholar
  3. 3.
    S. Yu, C. Liao, M. Hon, The effects of flux on the wetting characteristics of near eutectic Sn-Zn-In solder on Cu substrate. J. Mater. Sci. 35, 4217–4224 (2000)CrossRefGoogle Scholar
  4. 4.
    C. Li, M. Yan, M. Zhou, X. Ma, X. Zhang, H. Zhang, Q. Ye, Y. Huang. Effect of activators and surfactants in halogen-free fluxes on wettability of Sn-0.7Cu-0.05Ni solder on Cu substrate. 14th International Conference on Electronic Packaging Technology. 321–324 (2013)Google Scholar
  5. 5.
    S. Vaynman, M.E. Fine, Flux development for lead-free solders containing zinc. J. Electron. Mater. 29(10), 1160–1163 (2000)CrossRefGoogle Scholar
  6. 6.
    F.A. Mario, H. Min, L.A. Viola, Effect of flux on the wetting characteristics of SnAg, SnCu, SnAgBi, and SnAgCu lead-free solders on copper substrates. J. Electron. Mater. 35(7), 1530–1536 (2003)Google Scholar
  7. 7.
    C.M.L. Wu, C.M.T. Law, D.Q. Yu, L. Wang, The wettability and microstructure of Sn-Zn-RE alloys. J. Electron. Mater. 32(2), 63–69 (2003)CrossRefGoogle Scholar
  8. 8.
    F. Guo, S. Choi, J.P. Lucas, K.N. Subramanian, Effects of reflow on wettability, microstructure and mechanical properties in lead-free solders. J. Electron. Mater. 29(10), 1241–1248 (2000)CrossRefGoogle Scholar
  9. 9.
    E.L. Decker, B. Frank, Y. Suo, S. Garoff, Physics of contact angle measurement. Colloids Surf. A. 156, 177–189 (1999)CrossRefGoogle Scholar
  10. 10.
    Y. Yuehua, T.R. Lee, Contact angle and wetting properties. Surf. Sci. Tech. 51, 3–34 (2013)CrossRefGoogle Scholar
  11. 11.
    G. Kumar, N.K. Prabhu, Review of non-reactive and reactive wetting of liquids on surfaces. Adv. Colloid Interface Sci. 133(2), 61–89 (2007)CrossRefGoogle Scholar
  12. 12.
    E.M.N. Ervina, F.M.N. Nur, R.A.I. Siti, A review: lead free solder and its wettability properties. Solder. Surf. Mount Technol. 28, 125–132 (2016)CrossRefGoogle Scholar
  13. 13.
    D. Busek, K. Dusek, D. Ruzicka, M. Placek, P. Mach, J. Urbanek, J. Stary, Flux effect on void quantity and size in soldered joints. Microelectron. Reliab. 60, 135–140 (2016)CrossRefGoogle Scholar
  14. 14.
    J. Shen, Y.C. Chan, Effect of metal/ceramic nanoparticle-doped fluxes on the wettability between Sn–Ag–Cu solder and a Cu layer. J. Alloys Compd. 477, 909–914 (2009)CrossRefGoogle Scholar
  15. 15.
    J.P. Karl, A.S. Kathleen, Handbook of Lead-Free Solder Technology for Microelectronic Assemblies (Marcel Dekker, Inc, New York, 2004)Google Scholar
  16. 16.
    J.G. Robert, Contact angle, wetting, and adhesion: a critical review”. J. Adhes. Sci. Technol. 6, 1269–1302 (1992)CrossRefGoogle Scholar
  17. 17.
    M.C. Orlando, J.W. Corey, M.L. James, Competitive solvation of K + by benzene and water: cation-π interactions and π-hydrogen bonds. J. Chem. Phys.. 108, 5151–5154 (1998)CrossRefGoogle Scholar
  18. 18.
    E.W. Steven, W.G.B. Jacob, Towards a more complete understanding of non-covalent interactions involving aromatic rings. J. Phys. Chem. 118(32), 6133–6147 (2014)CrossRefGoogle Scholar
  19. 19.
    D.A. Dougherty, J.C. Ma, The cation-π interaction”. Chem Rev. 97(5), 1303–1324 (1997)CrossRefGoogle Scholar
  20. 20.
    T. Tal, S. Haim, M. Sabyaschi, A. Hadas, L. Keti, B. Tatyana, T.M. Dan, N.S. Chaim, V. Ayelet, C. David, Odd-even effect in molecular electronic transport via an aromatic ring. Am Chem. Soc. 30, 13596–13605 (2014)Google Scholar
  21. 21.
    K. Marco, K. Markus, Molecular-level interactions in soils and sediments: The role of aromatic π-systems. Environ. Sci. Technol. 43, 3421–3429 (2009)CrossRefGoogle Scholar
  22. 22.
    C.A. Hunter, K.R. Lawson, J. Perkins, C.J. Urch, Aromatics interactions. J. R. Chem. Soc. Perkin Trans. 2, 651–669 (2001)CrossRefGoogle Scholar
  23. 23.
    A.G. Matthew, W. Wei, M.S. Alex, R.C. Thomas, A.D. Howard, I. Matthew, F.C. Bradley, J.H. Waite, N.I. Jacob, Tuning underwater adhesion with cation–πinteractions. Nat. Chem. 9, 473–479 (2017)CrossRefGoogle Scholar
  24. 24.
    X.D. Liu, Y.D. Han, H.Y. Jing, J. Wei, L.Y. Xu, Effect of graphene nanosheets reinforcement on the performance of Sn–Ag–Cu lead-free solder. Mater. Sci. Eng. A. 562, 25–32 (2013)CrossRefGoogle Scholar
  25. 25.
    S. Peters, S. Peredkov, M. Neeb, W. Eberhardt, M. Al-Hada, Size-dependent XPS spectra of small supported Au-clusters. Surf. Sci. 608, 129–134 (2013)CrossRefGoogle Scholar
  26. 26.
    C.J. Nelin, P.S. Bagus, M.A. Brown, M. Sterrer, H.J. Freund, Analysis of the broadening of X-ray photoelectron spectroscopy peaks for ionic crystals. Angew. Chem. Int. Ed. 50, 10174–10177 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Norliza Ismail
    • 1
  • Roslina Ismail
    • 1
    • 2
  • Azman Jalar
    • 1
  • Ghazali Omar
    • 3
  • Emee Marina Salleh
    • 4
  • Norinsan Kamil
    • 4
  • Irman Abdul Rahman
    • 5
  1. 1.Institute of Microengineering and Nanoelectronic (IMEN)Universiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Division of Fine Arts, Cultural CentreUniversity of MalayaKuala LumpurMalaysia
  3. 3.Faculty of Mechanical EngineeringUniversiti Teknikal Malaysia Melaka (UTEM)MelakaMalaysia
  4. 4.Department of Materials Science, Faculty Science and TechnologyUniversiti Kebangsaan Malaysia (UKM)BangiMalaysia
  5. 5.Department of Nuclear ScienceUniversiti Kebangsaan Malaysia (UKM)BangiMalaysia

Personalised recommendations