Advertisement

Solution volume effect on structural, optical and photovoltaic properties of nebulizer spray deposited SnS thin films

  • A. M. S. Arulanantham
  • S. Valanarasu
  • A. Kathalingam
  • K. Jeyadheepan
Article
  • 26 Downloads

Abstract

SnS thin films deposited using nebulizer spray pyrolysis method by changing the precursor solution volume is reported in this work. The prepared films were characterized by X-ray diffraction, scanning electron microscopy, Raman spectrum, atomic force microscopy, EDAX, UV–Vis spectroscopy and PL spectrofluorometer analysis. Electrical studies done using Hall Effect measurement for the film is also reported. Structural and surface morphological analyses showed high crystalline single phase of SnS thin films with relatively low surface roughness. Optical studies done on the films revealed a decrease in band gap from 1.82 to 1.73 eV for the increase of solution volume from 5 to 15 ml. The CdS film prepared by this method showed a maximum of 75% transmittance and band gap of 2.51 eV. Prepared SnS thin film showed p-type conductivity with resistivity 2.01 × 101 Ω cm and carrier concentration 4.71 × 1017/cm3. A FTO/n-CdS/p-SnS heterostructure was also fabricated using the grown film and studied its photoconductivity.

Notes

Acknowledgements

The authors wish to express their sincere thanks to the Department of Science and Technology, New Delhi, India for their financial assistance for the work by the project number SB/FTP/PS-131/2013. The authors would like to thank Dr. K. Jeyadheepan, SASTRA University, for recording the Hall Effect measurements data.

References

  1. 1.
    V. Steinmann, R.E. Brandt, R. Chakraborty, R. Jaramillo, M. Young, B.K. Ofori-Okai, C. Yang, A. Polizzotti, K.A. Nelson, R.G. Gordon, T. Buonassisi, Apl Mater. 4, 026103 (2016)CrossRefGoogle Scholar
  2. 2.
    R.E. Abutbul, E. Segev, L. Zeiri, V. Ezersky, G. Makov, Y. Golan, J. R. Soc. Chem. 6, 5848–5855 (2015)Google Scholar
  3. 3.
    B. Kherchachi, A. Attaf, H. Saidi, A. Bouhdjer, H. Bendjedidi, Y. Benkhetta, R. Azizi, J. Semicond. 37, 032001 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Vijayarajasekaran, K. Vijayakumar, Int. J. Thin Films Sci. Technol. 4, 231–235 (2015)Google Scholar
  5. 5.
    K.T. Ramakrishna Reddy, N. Koteswara Reddy, R.W. Miles, Sol. Energy Mater. Sol. Cells 90, 3041–3046 (2006)CrossRefGoogle Scholar
  6. 6.
    L.S. Price, I.P. Parkin, A.M.E. Hardy, R.J.H. Clark, Chem. Mater. 11, 1792–1799 (1999)CrossRefGoogle Scholar
  7. 7.
    B. Ghosh, M. Das, P. Banerjee, S. Das, Semicond. Sci. Technol. 24, 025024 (2009)CrossRefGoogle Scholar
  8. 8.
    V. Robles, J.F. Trigo, C. Guillen, J. Herrero, J. Mater. Sci. 48, 3943–3949 (2013)CrossRefGoogle Scholar
  9. 9.
    K.G. Deepa, J. Nagaraju, Mater. Sci. Semicond. Process. 27, 649–653 (2014)CrossRefGoogle Scholar
  10. 10.
    A. Sanchez-Juarez, A. Tiburcio-Silver, A. Ortiz, Thin Solid Films 480–481, 452–456 (2005)CrossRefGoogle Scholar
  11. 11.
    P. Sinsermsuksakul, J. Heo, W. Noh, A.S. Hock, R.G. Gordon, Adv. Energy Mater. 1, 1116–1125 (2011)CrossRefGoogle Scholar
  12. 12.
    J. Park, M. Song, W.M. Jung, W.Y. Lee, J. Lee, H. Kim, I.-W. Shim, Bull. Korean Chem. Soc. 33, 3383 (2012)CrossRefGoogle Scholar
  13. 13.
    S.M. Ahmed, L.A. Latif, A.K.H. Salim, J. Basrah Res. (Sciences). 37, 15 (2011)Google Scholar
  14. 14.
    S. Cheng, Y. Chen, C. Huang, G. Chen, Thin Solid Films. 500, 96–100 (2006)CrossRefGoogle Scholar
  15. 15.
    K.T. Ramakrishna Reddy, P. Purandhara Reddy, P.K. Datta, R.W. Miles, Thin Solid Films. 403–404, 116–119 (2002)CrossRefGoogle Scholar
  16. 16.
    N. Koteswara Reddy, K.T. Ramakrishna Reddy, Thin Solid Films. 325, 4–6 (1998)CrossRefGoogle Scholar
  17. 17.
    P.K. Nair, A.R. Garcia-Angelmo, M.T.S. Nair, Phys. Status Solidi A 213, 170–177 (2016)CrossRefGoogle Scholar
  18. 18.
    K. Santhosh Kumar, C. Manoharan, S. Dhanapandian, A. Gowri Manohari, T. Mahalingam, Optik. 125, 3996–4000 (2014)CrossRefGoogle Scholar
  19. 19.
    E. Turan, M. Kul, A.S. Aybek, M. Zor, J. Phys. D 42, 245408 (2009)CrossRefGoogle Scholar
  20. 20.
    M. Patel, I. Mukhopadhyay, A. Ray, J. Alloys Compd. 619, 458–463 (2015)CrossRefGoogle Scholar
  21. 21.
    I.B. Kherchachi, H. Saidi, A. Attaf, N. Attaf, A. Bouhdjar, H. Bendjdidi, Y. Benkhetta, R. Azizi, M. Jlassi, Optik. 127, 4043–4046 (2016)CrossRefGoogle Scholar
  22. 22.
    M.S. Arulanantham, S. Valanarasu, K. Jeyadheepan, A. Kathalingam, J. Mater. Sci. Mater. Electron. 28, 18675–18685 (2017)CrossRefGoogle Scholar
  23. 23.
    N. Koteeswara Reddy, K. Ramesh, R. Ganesan, K.T. Ramakrishna Reddy, K.R. Gunasekhar, E.S.R. Gopal, Appl. Phys. A 83, 133–138 (2006)CrossRefGoogle Scholar
  24. 24.
    M.V. Reddy, G. Sreedevi, C. Park, R.W. Miles, K.T.R. Reddy, Curr. Appl. Phys. 15, 588–598 (2015)CrossRefGoogle Scholar
  25. 25.
    T. Srinivasa Reddy, M.C. Santhosh Kumar, RSC Adv. 6, 95680 (2016)CrossRefGoogle Scholar
  26. 26.
    H.R. Chandrasekar, R.G. Humphreys, U. Zwick, M. Cardona, Phys. Rev. B. 15, 2177–2183 (1977)CrossRefGoogle Scholar
  27. 27.
    S. Polivtseva, I. Oja Acik, A. Katerski, A. Mere, V. Mikli, M. Krunks, Energy Procedia 60, 156–165 (2014)CrossRefGoogle Scholar
  28. 28.
    T.H. Sajeesh, A.R. Warrier, C. Sudha Kartha, K.P. Vijayakumar, Thin Solid Films 518, 4370–4374 (2010)CrossRefGoogle Scholar
  29. 29.
    A. Akkari, M. Reghima, C. Guasch, N. Kamoun-Turki, J. Mater. Sci. 47, 1365–1371 (2012)CrossRefGoogle Scholar
  30. 30.
    M. Devika, N.K. Reddy, K. Ramesh, V. Ganesan, E.S.R. Gopal, K.T.R. Reddy, Appl. Surf. Sci. 253, 1673–1676 (2006)CrossRefGoogle Scholar
  31. 31.
    M.S. Selim, M.E. Gouda, M.G. El-Shaarawy, A.M. Salem, W.A. Abd El-Ghany, Thin Solid Films 527 164–169 (2013)CrossRefGoogle Scholar
  32. 32.
    C. Shi, Z. Chen, G. Shi, R. Sun, X. Zhan, X. Shen, Thin Solid Films 520, 4898–4901 (2012)CrossRefGoogle Scholar
  33. 33.
    S. Cheng, Y. He, G. Chen, E.-C. Cho, G. Conibeer, Surf. Coat. Technol. 202, 6070–6074 (2008)CrossRefGoogle Scholar
  34. 34.
    T. Sall, M. Mollar, B. Mari, J. Mater. Sci. 51, 7607 (2016)CrossRefGoogle Scholar
  35. 35.
    N. Koteeswara Reddy, K.T. Ramakrishna Reddy, Mater. Chem. Phys. 102, 13–18 (2007)CrossRefGoogle Scholar
  36. 36.
    K.T. Ramakrishna Reddy, G. Sreedevi, R.W. Miles, J. Mater. Sci. Eng. A 3(3), 182–186 (2013)Google Scholar
  37. 37.
    S. Gedi, V.R. Minnam Reddy, C. Park, J. Chan-Wook, K.T. Ramakrishna Reddy, Opt. Mater. 42, 468–475 (2015)CrossRefGoogle Scholar
  38. 38.
    E.R. Shaaban, M.S.A. El-Sadek, M. El-Hagary, I.S. Yahia, Phys. Scr. 86(1–6), 015702 (2012)CrossRefGoogle Scholar
  39. 39.
    N.G. Deshpande, A.A. Sagade, Y.G. Gudage, C.D. Lokhande, J. Alloys Compd. 436, 421–426 (2007)CrossRefGoogle Scholar
  40. 40.
    B. Ghosh, M. Das, P. Banerjee, S. Das, Appl. Surf. Sci. 254, 6436–6440 (2008)CrossRefGoogle Scholar
  41. 41.
    E. Guneri, C. Ulutas, F. Kirmizigul, Appl Surf Sci 257, 1189–1195 (2010)CrossRefGoogle Scholar
  42. 42.
    B. Ghosh, R. Bhattacharjee, P. Banerjee, S. Das, Appl. Surf. Sci. 257, 3670–3676 (2011)CrossRefGoogle Scholar
  43. 43.
    M.A. Barote, A.A. Yadav, T.V. Chavan, E.U. Masumdar, J. Nanomater. Biostruct. 6, 979–990 (2011)Google Scholar
  44. 44.
    B. Ghosh, M. Das, P. Banerjee, S. Das, Fabrication of the SnS/ZnO heterojunction for PV applications using electrodeposited ZnO films. Semicond. Sci. Technol. 24, 025024 (2009)CrossRefGoogle Scholar
  45. 45.
    P.A. Nwofe, K.T. Ramakrishna Reddy, G. Sreedevi, J.K. Tan, R.W. Miles, Jpn. J. Appl. Phys. 51, 10NC36 (2012)CrossRefGoogle Scholar
  46. 46.
    S.P. Zimin, E.S. Gorlachev, I. IAmirov, V. VNaumov, G.A. Dubov, V.F. Gremenok, S.A. Bashkirov, Semicond. Sci. Technol. 29, 015009 (2014)CrossRefGoogle Scholar
  47. 47.
    T. Rath, L. Gury, I. Sanchez-Molina, L. Martinez, S.A. Haque, Chem. Commun. 51, 10198–10201 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. M. S. Arulanantham
    • 1
  • S. Valanarasu
    • 1
  • A. Kathalingam
    • 2
  • K. Jeyadheepan
    • 3
  1. 1.PG and Research Department of PhysicsArul Anandar CollegeMaduraiIndia
  2. 2.Millimeter-Wave Innovation Technology Research Center (MINT)Dongguk University-SeoulSeoulSouth Korea
  3. 3.Multifunctional Materials & Devices Lab, Anusandhan Kendra – II, School of Electrical and Electronics EngineeringSASTRA UniversityThanjavurIndia

Personalised recommendations