Advertisement

Core–shell NiCo2O4@ZnWO4 nanosheets arrays electrode material deposited at carbon-cloth for flexible electrochemical supercapacitors

  • Kaihua Zhang
  • Liyang Lin
  • Shahid Hussain
  • Song Han
Article
  • 143 Downloads

Abstract

Three dimensional (3D) hierarchical NiCo2O4 nanosheet arrays (NSAs)@ZnWO4 nanoflakes (NFs) core–shell structures have been successfully grown on a carbon cloth (CC) using two-step hydrothermal approach, following a heat treatment route. Compared with the pure CC@NiCo2O4 NSAs electrode, the binder-free CC@NiCo2O4@ZnWO4 hybrid system gives rise to a higher specific capacitance of 872.0 Fg−1 at a low current density of 1 Ag−1 and 791.1 Fg−1 at a quite high current density of 20 Ag−1, and retains ~ 92.9% of the initial capacitance even after 5000 cycles of charge and discharge. The excellent electrochemical performance of CC@NiCo2O4@ZnWO4 electrode is attributed to its high specific surface area of the 3D structures, fast electron transport property of NiCo2O4 material as the skeleton, and the synergistic effect between NiCo2O4 and ZnWO4 materials, demonstrating that CC supported NiCo2O4 NSAs@ZnWO4 NFs composite as the high-performance electrode materials are highly desirable for the application of flexible supercapacitors.

Notes

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 11332013, 11272364, 11372104, 11372363, 5121543, and 21503025), Chongqing Research Program of Basic Research and Frontier Technology (No. cstc2016jcyjA0366), Students Research Training Program of Chongqing University (No. 2016408).

References

  1. 1.
    W. Wang, W.Y. Liu, Y.X. Zeng, Y. Han, M.H. Yu, X.H. Liu, Y.X. Tong, A novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth. Adv. Mater. 27, 3572–3578 (2015)CrossRefGoogle Scholar
  2. 2.
    Y. Cheng, H. Zhang, C.V. Varanasi, J. Liu, Improving the performance of cobalt-nickel hydroxide-based self-supporting electrodes for supercapacitors using accumulative approaches. Energy Environ. Sci. 6, 3314–3321 (2013)CrossRefGoogle Scholar
  3. 3.
    P. Vialat, C. Mousty, C. Taviot-Gueho, G. Renaudin, H. Martinez, J.C. Dupin, E. Elkaim, F. Leroux, High-performing monometallic cobalt layered double hydroxide supercapacitor with defined local structure. Adv. Funct. Mater. 24, 4831–4842 (2014)CrossRefGoogle Scholar
  4. 4.
    J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi, Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328, 480–483 (2010)CrossRefGoogle Scholar
  5. 5.
    J. Hou, C. Cao, F. Idrees, X. Ma, Hierarchical porous nitrogen-doped carbon sheets derived from silk for ultrahigh capacity battery anodes and supercapacitors. ACS Nano 9, 2556–2564 (2015)CrossRefGoogle Scholar
  6. 6.
    G. Gao, H.B. Wu, S. Ding, L.M. Liu, X.W. Lou, Hierarchical NiCo2O4 nanosheets grown on Ni nanofoam as high-performance electrodes for supercapacitors. Small 11, 804–808 (2015)CrossRefGoogle Scholar
  7. 7.
    V.H. Nguyen, J.J. Shim, In situ growth of hierarchical mesoporous NiCo2S4@MnO2 arrays on nickel foam for high-performance supercapacitors. Electrochim. Acta 166, 302–309 (2015)CrossRefGoogle Scholar
  8. 8.
    X. Tang, R.Y. Jia, T. Zhai, H. Xia, Hierarchical Fe3O4@Fe2O3 core-shell nanorods arrays as high-performance anodes for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7, 27518–27525 (2015)CrossRefGoogle Scholar
  9. 9.
    A. Lamberti, A. Gigot, S. Bianco, M. Fontana, M. Castellino, E. Tresso, C.F. Pirri, Self-assembly of graphene aerogel on copper wire for wearable fiber-shaped supercapacitors. Carbon 105, 649–654 (2016)CrossRefGoogle Scholar
  10. 10.
    Z.H. Li, M.F. Shao, L. Zhou, R.K. Zhang, C. Zhang, J.B. Han, M. Wei, D.G. Evans, X. Duan, A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core-shell nanoarrays. Nano Energy 20, 294–304 (2016)CrossRefGoogle Scholar
  11. 11.
    K. Xiao, L.X. Ding, G.X. Liu, H.B. Chen, S.Q. Wang, H.H. Wang, Freestanding hydrophilic nitrogen-doped carbon foam for highly compressible all solid-state supercapacitors. Adv Mater. 28, 5997–6002 (2016)CrossRefGoogle Scholar
  12. 12.
    J. Xu, Z.Q. Tan, W.C. Zeng, G.X. Chen, S.L. Wu, Y. Zhao, K. Ni, Z.C. Tao, M. Ikram, H.X. Ji, Y.W. Zhu, A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes. Adv. Mater. 28, 5222–5228 (2016)CrossRefGoogle Scholar
  13. 13.
    Z.S. Li, X.H. Hu, D.Q. Xiong, B.L. Li, H.Q. Wang, Q.Y. Li, Facile synthesis of bicontinuous microporous/mesoporous carbon foam with ultrahigh specific surface area for supercapacitor application. Electrochim. Acta 219, 339–349 (2016)CrossRefGoogle Scholar
  14. 14.
    U.M. Patil, R.V. Ghorpade, M.S. Nam, A.C. Nalawade, S. Lee, H. Han, S.C. Jun, PolyHIPE derived freestanding 3D carbon foam for cobalt hydroxide nanorods based high performance supercapacitor. Sci. Rep. 6, 35490–35500 (2016)CrossRefGoogle Scholar
  15. 15.
    X.H. Xia, D.L. Chao, Z.X. Fan, C. Guan, X.H. Cao, H. Zhang, H.J. Fan, A new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: structural design, fabrication, and full supercapacitor demonstrations. Nano Lett. 14, 1651–1658 (2014)CrossRefGoogle Scholar
  16. 16.
    L.Y. Lin, Q.B. Li, S.Y. Nie, X.H. Peng, N. Hu, 3D ZnCo2O4 nanowires@MnO2 nanosheets core-shell structures grown on carbon cloth for excellent supercapacitor electrodes. Ceram. Int. 42, 19343–19348 (2016)CrossRefGoogle Scholar
  17. 17.
    L.F. Chen, Z.Y. Yu, J.J. Wang, Q.X. Li, Z.Q. Tan, Y.W. Zhu, S.H. Yu, Metal-like fluorine-doped β-FeOOH nanorods grown on carbon cloth for scalable high-performance supercapacitors. Nano Energy 11, 119–128 (2015)CrossRefGoogle Scholar
  18. 18.
    Z.H. Pan, Y.C. Qiu, J. Yang, F.M. Ye, Y.J. Xu, X.Y. Zhang, M.N. Liu, Y.G. Zhang, Ultra-endurance flexible all-solid-state asymmetric supercapacitors based on three-dimensionally coated MnOx nanosheets on nanoporous current collectors. Nano Energy 26, 610–619 (2016)CrossRefGoogle Scholar
  19. 19.
    Z.Y. Yu, L.F. Chen, S.H. Yu, Growth of NiFe2O4 nanoparticles on carbon cloth for high performance flexible supercapacitors. J. Mater. Chem. A 2, 10889–10894 (2014)CrossRefGoogle Scholar
  20. 20.
    L.Y. Lin, J.L. Liu, T.M. Liu, J.H. Hao, K.M. Ji, R. Sun, W. Zeng, Z.C. Wang, Growth-controlled NiCo2S4 nanosheet arrays with self-decorated nanoneedles for high-performance pseudocapacitors. J. Mater. Chem. A 3, 17652–17658 (2015)CrossRefGoogle Scholar
  21. 21.
    S.J. Song, F.W. Ma, G. Wu, D. Ma, W.D. Geng, J.F. Wan, Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J. Mater. Chem. A 3, 18152–18162 (2015)Google Scholar
  22. 22.
    S. Hussain, P.P. Wan, N. Aslam, G.J. Qiao, G.W. Liu, Ag-doped NiO porous network structure on Ni foam as electrode for supercapacitors. J. Mater. Sci. Mater. Electron. 29, 1759–1765 (2018)CrossRefGoogle Scholar
  23. 23.
    L.Y. Lin, T.M. Liu, J.L. Liu, R. Sun, J.H. Hao, K.M. Ji, Z.C. Wang, Facile synthesis of groove-like NiMoO4 hollow nanorods for high-performance supercapacitors. Appl. Surf. Sci. 360, 234 – 239 (2016)CrossRefGoogle Scholar
  24. 24.
    H.Y. Mi, X.G. Zhang, X.G. Ye, S.D. Yang, Preparation and enhanced capacitance of core-shell polypyrrole/polyaniline composite electrode for supercapacitors. J. Power Sources 176, 403–409 (2008)CrossRefGoogle Scholar
  25. 25.
    D.B. Yu, B. Wu, L. Ge, L. Wu, H.T. Wang, T.W. Xu, Decorating nanoporous ZIF-67-derived NiCo2O4 shells on a Co3O4 nanowire array core for battery-type electrodes with enhanced energy storage performance. J. Mater. Chem. A 4, 10878–10884 (2016)CrossRefGoogle Scholar
  26. 26.
    T.F. Qiu, B. Luo, M. Giersig, E.M. Akinoglu, L. Hao, X.J. Wang, L. Shi, M.H. Jin, L.J. Zhi, Au@MnO2 core-shell nanomesh electrodes for transparent flexible supercapacitors. Small 10, 4136–4141 (2014)Google Scholar
  27. 27.
    B.K. Guan, L.L. Hu, G.H. Zhang, D. Guo, T. Fu, J.D. Li, H.G. Duan, C.C. Li, Q.H. Li, Facile synthesis of ZnWO4 nanowall arrays on Ni foam for high performance supercapacitors. RSC Adv. 4, 4212–4217 (2014)CrossRefGoogle Scholar
  28. 28.
    X.J. Liu, J.F. Liu, X.M. Sun, NiCo2O4@NiO hybrid arrays with improved electrochemical performance for pseudocapacitors. J. Mater. Chem. A 3, 13900–23905 (2015)CrossRefGoogle Scholar
  29. 29.
    D.Z. Kong, W.N. Ren, C.W. Cheng, Y. Wang, Z.X. Huang, H.Y. Yang, Three-dimensional NiCo2O4@Polypyrrole coaxial nanowire arrays on carbon textiles for high-performance flexible asymmetric solid-state supercapacitor. ACS Appl. Mater. Interfaces 7, 21334–21346 (2015)CrossRefGoogle Scholar
  30. 30.
    F.Z. Deng, J.J. Tie, B. Lan, M. Sun, S.M. Peng, S.H. Deng, B.Y. Li, W.J. Sun, L. Yu, NiCo2O4/MnO2 heterostructured nanosheet: influence of preparation conditions on its electrochemical properties. Electrochim. Acta 176, 259–268 (2015)CrossRefGoogle Scholar
  31. 31.
    C.Y. Cui, J.T. Xu, L. Wang, D. Guo, M.L. Mao, J.M. Ma, T.H. Wang, Growth of NiCo2O4@MnMoO4 nanocolumn arrays with superior pseudocapacitor properties. ACS Appl. Mater. Interfaces 8, 8568–8575 (2016)CrossRefGoogle Scholar
  32. 32.
    G. Li, W.Y. Li, K.B. Xu, R.J. Zou, Z.G. Chen, J.Q. Hu, Sponge-like NiCo2O4/MnO2 ultrathin nanoflakes for supercapacitor with high-rate performance and ultra-long cycle life. J. Mater. Chem. A 2, 7738–7741 (2014)CrossRefGoogle Scholar
  33. 33.
    J. Liang, Z.Y. Fan, S. Chen, S.J. Ding, G. Yang, Hierarchical NiCo2O4 nanosheets@halloysite nanotubes with ultrahigh capacitance and long cycle stability as electrochemical pseudocapacitor materials. Chem. Mater. 26, 4354–4360 (2014)CrossRefGoogle Scholar
  34. 34.
    R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett. 12, 2559 – 2567 (2012)CrossRefGoogle Scholar
  35. 35.
    G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797 – 828 (2012)CrossRefGoogle Scholar
  36. 36.
    R. Ang, Z.C. Wang, C.L. Chen, J. Tang, N. Liu, Y. Liu, W.J. Lu, Y.P. Sun, T. Mori, Y. Ikuhara, Atomistic origin of an ordered superstructure induced superconductivity in layered chalcogenides. Nat. commun. 6, 6091 (2015)CrossRefGoogle Scholar
  37. 37.
    Z.C. Wang, M. Saito, K.P. McKenna, L. Gu, S. Tsukimoto, A.L. Shluger, Y. Ikuhara, Atom-resolved imaging of ordered defect superstructures at individual grain boundaries. Nature 479, 380–383 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Aerospace Engineering, Chongqing UniversityChongqingChina
  2. 2.School of Materials Science and Engineering, Jiangsu UniversityJiangsuChina

Personalised recommendations