Enhanced visible-light photocatalytic decomposition of malachite green over squaraines sensitized SnIn4S8 composites and effect of dye structure on photocatalytic behaviors

  • Min Lu
  • Yuzhe Zhang
  • Beibei Li
  • Xiazhang Li
  • Song Xu
  • Zhongyu LiEmail author
  • Baozhu YangEmail author


A series of indole squaraines (SQs) sensitized SnIn4S8 particles with the mass ratio of 1:10 were fabricated by a facile ultrasonic method. The obtained samples have been characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, diffuse reflection spectroscopy, Fourier transforms infrared spectroscopy and Raman spectroscopy. The as-prepared squaraines/SnIn4S8 composites exhibited the excellent thermal stability. The efficient charge-transfer ability of squaraines was calculated by Gaussian 98 at the B3YP/6-311 + G(d,p) level. The highest occupied molecular orbital and the lowest unoccupied molecular orbital states had been obtained to match the band gap of pure SnIn4S8. The malachite green (MG) was used as the degradation dye to measure the photocatalytic performance of different SQs sensitized SnIn4S8 composites. The results showed that the sensitized composites exhibited significantly enhanced photocatalytic activities. Among them, The BSQ/SnIn4S8 composites showed the best photocatalytic performance whose degradation rate reached 97.91% under 40 min visible-light irradiation. The kapp value of BSQ/SnIn4S8 composites (0.0962 min−1) was 4.20 times larger than that of bare SnIn4S8 (0.0229 min−1). The kapp value of ISQ/SnIn4S8, MSQ/SnIn4S8, FSQ/SnIn4S8 and CSQ/SnIn4S8 was evaluated to be 0.0328, 0.0358, 0.0526 and 0.0192 min−1, respectively. According to the fluorescence spectra, BSQ/SnIn4S8 possessed the highest fluorescence quantum yield of 0.4621 within all nanocomposites. Furthermore, the photocatalytic mechanism of squaraines/SnIn4S8 composites was also proposed.



This work was financially supported by the Natural Science Foundation of Jiangsu Province, China (BK20150259) and the Natural Science Foundation of Changzhou City, China (CJ20140053).


  1. 1.
    F.F. Brites, V.S. Santana, N.R.C.F. Machado, Top. Catal. 54, 264 (2011)CrossRefGoogle Scholar
  2. 2.
    A. Houas, H. Lachheb, M. Ksibi. E. Elaloui, C. Guillard, J. Herrmann, Appl. Catal. B 31, 145 (2001)CrossRefGoogle Scholar
  3. 3.
    F. Meng, J. Li, S.K. Cushing, M. Zhi, N. Wu, J. Am. Chem. Soc. 135, 10286 (2013)CrossRefGoogle Scholar
  4. 4.
    W. Chen, Y. Hua, Y. Wang, T. Huang, T. Liu, X. Liu, J. Catal. 349, 8 (2017)CrossRefGoogle Scholar
  5. 5.
    Y. Yuan, D. Chen, X. Shi, J. Tu, B. Hu, L. Yang, Z. Yu, Z. Zou, Chem. Eng. J. 313, 1438 (2017)CrossRefGoogle Scholar
  6. 6.
    B. Shanka, W. Peng, D.S. Richard, R. Tijana, A.R. Elena, Nano Lett. 13, 3365 (2013)CrossRefGoogle Scholar
  7. 7.
    D. Zhang, X. Yang, J. Zhu, Y. Zhang, P. Zhang, G. Li, J. Sol-Gel. Sci. Technol. 58, 594 (2011)CrossRefGoogle Scholar
  8. 8.
    S. Cao, Z. Yin, J. Barber, F.Y.C. Boey, S.C.J. Loo, C. Xue, ACS Appl. Mater. Interfaces 4, 418 (2012)CrossRefGoogle Scholar
  9. 9.
    Z. Li, Y. Fang, X. Zhan. S. Xu, J. Alloys Compd. 564, 138 (2013)CrossRefGoogle Scholar
  10. 10.
    B.M. Rajbongshi, A. Ramchiary, B.M. Jha, S.K. Samdarsh, J. Mater. Sci.: Mater. Electron. 25, 2969 (2017)Google Scholar
  11. 11.
    Y. Fang, Z. Li, S. Xu, D. Han, D. Lu, J. Alloys Compd. 575, 359 (2013)CrossRefGoogle Scholar
  12. 12.
    U. Lamdab, K. Wetchakun, S. Phanichphant, W. Kangwansupamonkon, N. Wetchakun, J. Mater. Sci. 50, 5788 (2015)CrossRefGoogle Scholar
  13. 13.
    B. Liu, Z. Li, S. Xu, X. Ren, D. Han, D. Lu, J. Phys. Chem. Solids 75, 977 (2014)CrossRefGoogle Scholar
  14. 14.
    Y. Li, N. Chopra, J. Catal. 329, 514 (2015)CrossRefGoogle Scholar
  15. 15.
    C. Han. M. Yang, B. Weng, Y. Xu, Phys. Chem. Chem. Phys. 16, 16891 (2014)CrossRefGoogle Scholar
  16. 16.
    Y. Zhang, Z. Schnepp, J. Cao, S. Ouyang, Y. Li, J. Ye, S. Liu, Sci. Rep. 3, 2163 (2013)CrossRefGoogle Scholar
  17. 17.
    S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P. Ajayan, Adv. Mater. 25, 2452 (2013)CrossRefGoogle Scholar
  18. 18.
    H. Zhang, J. Fan, Z. Iqbal, D. Kuang, L. Wang, H. Meier, D. Cao, Org. Electron. 14, 2071 (2013)CrossRefGoogle Scholar
  19. 19.
    L. Lin, M.H. Yeh, C.P. Lee, J. Chang, A. Baheti, R. Vittal, K.R.J. Thomas, K.C. Ho, J. Power Sources 247, 906 (2014)CrossRefGoogle Scholar
  20. 20.
    H. Wang, Y. Chen, W. Ye, J. Xu, D. Liu, J. Yang, L. Kong, H. Zhou, Y. Tian, X. Tao, Dyes Pigments 96, 738 (2013)CrossRefGoogle Scholar
  21. 21.
    S.B. Mane, J. Hu, Y. Chang, L. Luo, E.W.G. Diau, C. Hung, Chem. Commun. 49, 6882 (2013)CrossRefGoogle Scholar
  22. 22.
    X. Yang, M. Yanagida, L. Han, Energy Environ. Sci. 6, 54 (2013)CrossRefGoogle Scholar
  23. 23.
    C. Fu, L. Lei, K. Sun, P. Xia, H. Yuan, D. Xiao, Z. Li, Renew. Energy 38, 163 (2012)CrossRefGoogle Scholar
  24. 24.
    J.V. Ros-Lis, M.D. Marcos, R. Martinez-Manez, K. Rurack, J. Soto, Angew. Chem. Int. Ed. 44, 4405 (2005)CrossRefGoogle Scholar
  25. 25.
    T. Maeda, N. Shima, T. Tsukamoto, S. Yagi, H. Nakazumi, Synth. Met. 161, 2481 (2011)CrossRefGoogle Scholar
  26. 26.
    L. Hu, Z. Yan, H. Xu, RSC Adv. 3, 7667 (2013)CrossRefGoogle Scholar
  27. 27.
    R. Li, P. Wang, Adv. Funct. Mater. 23, 1846 (2013)CrossRefGoogle Scholar
  28. 28.
    T. Inoue, S.S. Pandey, N. Fujikawa, Y. Yamaguchi, S. Hayase, J. Photochem. Photobiol. A 213, 23 (2010)CrossRefGoogle Scholar
  29. 29.
    S. Miltsov, C. Encinas, J. Alonso, Tetrahedron Lett. 40, 4067 (1999)CrossRefGoogle Scholar
  30. 30.
    T. Yan, L. Li, G. Li, Y. Wang, W. Hu, X. Guan, J. Hazard. Mater. 186, 272 (2011)CrossRefGoogle Scholar
  31. 31.
    Y. Fang, Z. Li, S. Xu, D. Han, D. Lu, Nano 9, 1450036 (2014)CrossRefGoogle Scholar
  32. 32.
    Y. Fang, Z. Li, B. Yang, S. Xu, X. Hu, Q. Liu, D. Han, D. Lu, J. Phys. Chem. C 118, 16113 (2014)CrossRefGoogle Scholar
  33. 33.
    Y. Wang, C. Wang. S. Xue, Q. Liang, Z.Y. Li, S. Xu, RSC Adv. 6, 6540 (2016)CrossRefGoogle Scholar
  34. 34.
    C. Ding, L. Tian, B. Liu, Q. Liang, Z. Li, S. Xu, Q. Li, D. Lu, J. Alloys Compd. 633, 300 (2015)CrossRefGoogle Scholar
  35. 35.
    G.D. Miguel, M. Marchena, B. Cohen, S.S. Pandey, S. Hayase, A. Douhal, J. Phys. Chem. C 116, 22157 (2012)CrossRefGoogle Scholar
  36. 36.
    J.N. Demasa, G.A. Crosby, J. Phys. Chem. 75, 991 (1971)CrossRefGoogle Scholar
  37. 37.
    J. Zhang, L. Yang, M. Zhang, P. Wang, RSC Adv. 3, 6030 (2013)CrossRefGoogle Scholar
  38. 38.
    A.M. Bakhshayesh, M.R. Mohammadi, D.J. Fray, Electrochim. Acta 78, 384 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical EngineeringChangzhou UniversityChangzhouPeople’s Republic of China
  2. 2.Advanced Catalysis and Green Manufacturing Collaborative Innovation CenterChangzhou UniversityChangzhouPeople’s Republic of China
  3. 3.School of Environmental and Safety EngineeringChangzhou UniversityChangzhouPeople’s Republic of China

Personalised recommendations