Modulation of DC breakdown strength by direct fluorination in polyethylene

  • Ni Zhao
  • Yongjie Nie
  • Shengtao LiEmail author


Breakdown performance of polymer under high voltage direct current (DC) and alternating current (AC) fields is receiving more and more attentions with the ever-increasing demand of raising voltage class and developing long-distance transmission. The existing researches indicate that space charge should play an important role in influencing breakdown performance. However, two key issues, that the different effects of space charge on DC breakdown strength (FDC) and AC breakdown strength (FAC), and that the reason for FDC being always higher than FAC, remain not completely clear. In this letter, we study the mechanism of DC and AC breakdown by modulating space charge distribution in low density polyethylene by using direct fluorination process. The results show that FDC closely relates to the space charge modulation under DC field but FAC almost has nothing to do with it. Therefore, direct fluorination process can be used to modulate space charge distribution under DC field and further FDC. DC breakdown models with both homocharge and heterocharge distributions are proposed. They ascribe DC breakdown to field distortion induced by space charge and large defects caused by energetic processes, which happen in middle bulk under homocharge distribution and in marginal bulk under heterocharge distribution. FAC being still lower than FDC with heterocharge distribution proves the important influence of the energetic processes happening at polymer/electrode interface and in marginal bulk, besides the field enhancement caused by heterocharge. The modulation mechanism is discussed combined with trap characteristics of carriers.



We thank JRB Packaging Co., Ltd for assistance with the experiment of fluorination process. Financial support from China National Funds for International (regional) projects of cooperation and exchange (Grant No. 51161130524) and the National Natural Science Foundation of China (Grant No. 51221005 and No. 51337008) is gratefully acknowledged.


  1. 1.
    M. Ieda, M. Nawata, IEEE Trans. Electr. Insul. EI-12(1), 19 (1977)CrossRefGoogle Scholar
  2. 2.
    N. Hussin, J. Zhao, G. Chen, in Conference Proceedings of International Symposium on Electrical Insulation Materials-ISEIM-, Tokyo, Japan, 6–11 September 2011, pp. 65Google Scholar
  3. 3.
    M. Ieda, IEEE Trans. Electr. Insul. EI-15(3), 206 (1980)CrossRefGoogle Scholar
  4. 4.
    T.R. Jow, P.J. Cygan, in the IEEE International Symposium on Electrical Insulation, Baltimore, MD USA, 7–10 June, 1992, pp. 181Google Scholar
  5. 5.
    K. Matsui, Y. Tanaka, T. Takada, T. Fukao, K. Fukunaga, T. Maeno, J.M. Alison, IEEE Trans. Dielectr. Electr. Insul. 12(3), 406 (2005)CrossRefGoogle Scholar
  6. 6.
    G. Chen, J. Zhao, S. Li, L. Zhong, Appl. Phys. Lett. 100(22), 222904 (2012)CrossRefGoogle Scholar
  7. 7.
    T. Tanaka, A. Bulinski, J. Castellon, M. Frechette, S. Gubanski, J. Kindersberger, G.C. Montanari, M. Nagao, P. Morshuis, Y. Tanaka et al., IEEE Trans. Dielectr. Electr. Insul. 18(5), 1484 (2011)CrossRefGoogle Scholar
  8. 8.
    L. Zhang, Y. Zhou, X. Cui, Y. Sha, T.H. Le, Q. Ye, J. Tian, IEEE Trans. Dielectr. Electr. Insul. 21(4), 1554 (2014)CrossRefGoogle Scholar
  9. 9.
    Z. An, Q. Yang, C. Xie, Y. Jiang, F. Zheng, Y. Zhang, J. Appl. Phys. 105, 064102 (2009)CrossRefGoogle Scholar
  10. 10.
    B. Qiao, G. Teyssedre, C. Laurent, J. Phys. D 48, 405102 (2015)CrossRefGoogle Scholar
  11. 11.
    X. Chen, X. Wang, K. Wu, Z. Peng, Y. Cheng, D. Tu, IEEE Trans. Dielectr. Electr. Insul. 17(6), 1796 (2010)CrossRefGoogle Scholar
  12. 12.
    W. Shen, H. Mu, G. Zhang, J. Deng, D. Tu, J. Appl. Phys. 113, 083706 (2013)CrossRefGoogle Scholar
  13. 13.
    D. Mary, M. Albertini, C. Laurent, J. Phys. D 30, 171 (1997)CrossRefGoogle Scholar
  14. 14.
    N. Shimizu, H. Katsukawa, M. Miyauchi, M. Kosaki, K. Horii, IEEE Trans. Electr. Insul. EI-14(5), 256 (1979)CrossRefGoogle Scholar
  15. 15.
    G. Chen, S. Li, L. Zhong, in IEEE Conference on Electrical Insulation and Dielectric Phenomena-CEIDP-, Shenzhen, China, 20–23 October, 2013, pp. 663Google Scholar
  16. 16.
    S. Li, Y. Zhu, D. Min, G. Chen, Sci. Rep. 6, 32588 (2016)CrossRefGoogle Scholar
  17. 17.
    G. Teyssedre, L. Cisse, D. Mary, C. Laurent, IEEE Trans. Dielectr. Electr. Insul. 6(1), 11 (1999)CrossRefGoogle Scholar
  18. 18.
    A.P. Kharitonov, L.N. Kharitonova, Pure Appl. Chem. 81(3), 451 (2009)CrossRefGoogle Scholar
  19. 19.
    S. Serra, E. Tosatti, S. Iarlori, S. Scandolo, G. Santoro, Phys. Rev. B 62(7), 4389 (2000)CrossRefGoogle Scholar
  20. 20.
    T.J. Lewis, IEEE Trans. Dielectr. Electr. Insul. 9(5), 717 (2002)CrossRefGoogle Scholar
  21. 21.
    J.P. Jones, J.P. Llewellyn, T.J. Lewis, IEEE Trans. Dielectr. Electr. Insul. 12(5), 951 (2005)CrossRefGoogle Scholar
  22. 22.
    A.P. Kharitonov, R. Taege, G. Ferrier, N.P. Piven, Surf. Coat. Int. B 88(B3), 201 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations