Advertisement

Synthesis of MnWO4@C as novel anode material for lithium ion battery

  • Ge Gao
  • Wei Dang
  • Huimin Wu
  • Guangxue Zhang
  • Chuanqi Feng
Article
  • 58 Downloads

Abstract

The flower-like MnWO4@C microsphere was synthesized by a facial hydrothermal method using glucose as carbon source. The structure and morphology of the samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscope and Raman spectra techniques. The electrochemical performances are investigated by means of galvanostatic charge/discharge system and electrochemical work station. The results showed that the introduction of carbon in MnWO4@C composite could improve the electrochemical properties of MnWO4 greatly. When compared with the pure MnWO4, the MnWO4@C composite presented a higher initial discharge capacity (1210 mAh g−1), and reversible capacity (1063 mAh g−1) after 100 cycles, as well as superior rate performances in the voltage range of 0.01–3 V. The outstanding electrochemical performances of MnWO4@C composite demonstrate that MnWO4@C synthesized by this method can be used as a promising anode material for lithium-ion batteries application.

Notes

Acknowledgements

Financial support by the Natural Science Foundation of China (No. 21476063) is gratefully acknowledged.

References

  1. 1.
    S. Jin, H. Deng, D. Long et al., J. Power Sources 196, 3887–3893 (2011)CrossRefGoogle Scholar
  2. 2.
    X. Zhao, D. Xia, J. Yue et al., Electrochim. Acta 116, 292–299 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Zhao, S. Zhang, W. Liu et al., Electrochim. Acta 121, 428–433 (2014)CrossRefGoogle Scholar
  4. 4.
    G. Chen, R. Rodriguez, L. Fei et al., J. Power Sources 259, 227–232 (2014)CrossRefGoogle Scholar
  5. 5.
    Y. Li, B. Tan, Y. Wu, Nano Lett. 8, 265–270 (2008)CrossRefGoogle Scholar
  6. 6.
    X.W. Lou, Y. Wang, C. Yuan et al., Adv. Mater. 18, 2325–2329 (2006)CrossRefGoogle Scholar
  7. 7.
    Z. Wang, L. Zhou, X.W. Lou, Adv. Mater. 24, 1903–1911 (2012)CrossRefGoogle Scholar
  8. 8.
    X. Wang, H. Guan, S. Chen et al., Chem. Commun. 47, 12280–12282 (2011)CrossRefGoogle Scholar
  9. 9.
    X. Li, X. Huang, D. Liu et al., J. Phys. Chem. C 115, 21567–21573 (2011)CrossRefGoogle Scholar
  10. 10.
    K. Zhang, X. Han, Z. Hu et al., Chem. Soc. Rev. 44, 699–728 (2015)CrossRefGoogle Scholar
  11. 11.
    W.Y. Li, L.N. Xu, J. Chen, Adv. Funct. Mater. 15, 851–857 (2005)CrossRefGoogle Scholar
  12. 12.
    Y.X. Zhou, Q. Zhang, J.Y. Gong et al., J. Phys. Chem. C 112, 13383–13389 (2008)CrossRefGoogle Scholar
  13. 13.
    U. Nithiyanantham, S.R. Ede, T. Kesavan et al., RSC Adv. 4, 38169–38181 (2014)CrossRefGoogle Scholar
  14. 14.
    S. Saranya, S.T. Senthilkumar, K.V. Sankar et al., J. Electroceram. 28, 220–225 (2012)CrossRefGoogle Scholar
  15. 15.
    S. Muthamizh, R. Suresh, K. Giribabu et al., J. Alloy Compd. 619, 601–609 (2015)CrossRefGoogle Scholar
  16. 16.
    Y.X. Zhou, H.B. Yao, Q. Zhang et al., Inorg. Chem. 48, 1082–1090 (2009)CrossRefGoogle Scholar
  17. 17.
    R. Bharati, R.A. Singh, B.M. Wanklyn, J. Mater. Sci. 18, 1540–1542 (1983)CrossRefGoogle Scholar
  18. 18.
    L. Zhang, C. Lu, Y. Wang et al., Mater. Chem. Phys. 103, 433–436 (2007)CrossRefGoogle Scholar
  19. 19.
    E. Zhang, Z. Xing, J. Wang et al., RSC Adv. 2, 6748–6751 (2012)CrossRefGoogle Scholar
  20. 20.
    H.W. Shim, A.H. Lim, J.C. Kim et al., Chem. Asian J. 8, 2851–2858 (2013)CrossRefGoogle Scholar
  21. 21.
    C. Li, X. Yin, L. Chen et al., J. Phys. Chem. C 113, 13438–13442 (2009)CrossRefGoogle Scholar
  22. 22.
    I. Lahiri, S.W. Oh, J.Y. Hwang et al., ACS Nano 4, 3440–3446 (2010)CrossRefGoogle Scholar
  23. 23.
    P.G. Bruce, B. Scrosati, J.M. Tarascon, Angew. Chem. Int. Ed. 47, 2930–2946 (2008)CrossRefGoogle Scholar
  24. 24.
    A. Varzi, C. Taubert, M. Wohlfahrt-Mehrens et al., J. Power Sources 196, 3303–3309 (2011)CrossRefGoogle Scholar
  25. 25.
    Y. Zhang, T. Chen, J. Wang et al., Appl. Surf. Sci. 258, 4729–4732 (2012)CrossRefGoogle Scholar
  26. 26.
    H. Huang, S. Yin, T. Kerr et al., Adv. Mater. 14, 1525–1528 (2002)CrossRefGoogle Scholar
  27. 27.
    H. Wang, L.F. Cui, Y. Yang et al., J. Am. Chem. Soc. 132, 13978–13980 (2010)CrossRefGoogle Scholar
  28. 28.
    J.Z. Wang, C. Zhong, D. Wexler et al., Chem-Eur. J. 17, 661–667 (2011)CrossRefGoogle Scholar
  29. 29.
    J.S. Chen, Y. Zhang, X.W. Lou, ACS Appl. Mater. Interfaces 3, 3276–3279 (2011)CrossRefGoogle Scholar
  30. 30.
    K. Novoselov, A. Geim, S. Morozov et al., Science 306, 666–669 (2004)CrossRefGoogle Scholar
  31. 31.
    X. Wang, B.L. Li, D.P. Liu et al., Sci. China Chem. 57, 122–126 (2014)CrossRefGoogle Scholar
  32. 32.
    J. Tang, J. Shen, N. Li et al., J. Alloy Compd. 666, 15–22 (2016)CrossRefGoogle Scholar
  33. 33.
    T.D. Nguyen, D. Mrabet, C.T. Dinh et al., CrystEngComm 13, 1450–1460 (2011)CrossRefGoogle Scholar
  34. 34.
    Q. Li, C. Feng, J. Electron. Mater. 45, 3127–3133 (2016)CrossRefGoogle Scholar
  35. 35.
    S. Muthamizh, R. Suresh, K.R. Giribabu, et al. J. Alloy Compd. 619, 601–609 (2015)CrossRefGoogle Scholar
  36. 36.
    Y. Guo, X. Sun, Y. Liu et al., Carbon 50, 2513–2523 (2012)CrossRefGoogle Scholar
  37. 37.
    X. Li, J. Shen, N. Li et al., J. Power Sources 282, 194–201 (2015)CrossRefGoogle Scholar
  38. 38.
    L. Zhi, Y.S. Hu, B.E. Hamaoui et al., Adv. Mater. 20, 1727–1731 (2008)CrossRefGoogle Scholar
  39. 39.
    H. Wang, Z. Wu, F. Meng et al., ChemSusChem 6, 56–60 (2013)CrossRefGoogle Scholar
  40. 40.
    K. Tang, L. Fu, R.J. White et al., Adv. Energy Mater. 2, 873–877 (2012)CrossRefGoogle Scholar
  41. 41.
    L. Yuan, K. Konstantinov, G.X. Wang et al., J. Power Sources 146, 180–184 (2005)CrossRefGoogle Scholar
  42. 42.
    J. Wang, P. King, R.A. Huggins, Solid State Ion. 20, 185–189 (1986)CrossRefGoogle Scholar
  43. 43.
    S. Hu, W. Chen, J. Zhou et al., J. Mater. Chem. A 2, 7862–7872 (2014)CrossRefGoogle Scholar
  44. 44.
    W. Wang, Y. Yang, S.J. Yang et al., Electrochim. Acta 155, 297–304 (2015)CrossRefGoogle Scholar
  45. 45.
    H. Zheng, C. Feng, S.J. Kim et al., Electrochim. Acta 88, 225–230 (2013)CrossRefGoogle Scholar
  46. 46.
    S. Yang, X. Feng, L. Zhi et al., Adv. Mater. 22, 838–842 (2010)CrossRefGoogle Scholar
  47. 47.
    Y.J. Kang, J.H. Kim, S.W. Lee et al., Electrochim. Acta 50, 4784–4791 (2005)CrossRefGoogle Scholar
  48. 48.
    F. Nobili, F. Croce, B. Scrosati et al., Chem. Mater. 13, 1642–1646 (2001)CrossRefGoogle Scholar
  49. 49.
    D. Zhang, B.N. Popov, R.E. White, J. Power Sources 76, 81–90 (1998)CrossRefGoogle Scholar
  50. 50.
    P.K. Nayak, J. Grinblat, M. Levi et al., J. Electroanal. Chem 733, 6–19 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for Synthesis and Applications of Organic Functional MoleculesHubei UniversityWuhanChina
  2. 2.School of Nuclear Technology and Chemistry & BiologyHubei University of Science and TechnologyXianningChina

Personalised recommendations