Advertisement

Structural and complex impedance properties of Zn2+ substituted nickel ferrite prepared via low-temperature citrate gel auto-combustion method

  • M. V. Santhosh Kumar
  • G. J. Shankarmurthy
  • E. Melagiriyappa
  • K. K. Nagaraja
  • H. S. Jayanna
  • M. P. Telenkov
Article
  • 109 Downloads

Abstract

We report the productive synthesis of nanocrystalline zinc substituted mixed ferrite (Ni1−xZnxFe2O4 (0 ≤ x ≤ 1)) particles via low-temperature citrate gel auto-combustion method. The structure and microstructure of the particles, elemental analysis, and complex impedance properties are carried out by PXRD, FESEM, EDS and impedance spectroscopy respectively. The increased lattice parameters with Zn2+ concentrations suggest the substitution of Zn2+ ions to Ni2+. Dielectric constant, dielectric loss and AC conductivity were studied as a function of frequency infer a significant alteration in the dielectric constant, dielectric loss and A.C. conductivity and also showed that zinc substituted ferrites possess low tangent loss (≈ 10−2) at high frequencies. Further, the impedance spectroscopic studies reveal that Zn2+ substituted (x = 0.2, 0.8 and 1) samples attain non-Debye type dielectric relaxation.

Notes

Acknowledgements

The authors are thankful to DST PURSE lab, Mangaluru University for providing FESEM instrumentation facility. The authors also express their gratefulness to Dr. B J. Madhu, SJM Science College, Chitradurga.

References

  1. 1.
    R. Valenzuela, Novel applications of ferrites. Phys. Res. Int. 2012, 1–9 (2012).  https://doi.org/10.1155/2012/591839 CrossRefGoogle Scholar
  2. 2.
    W. Callister, D. Rethwisch, Materials Science and Engineering: An Introduction (Wiley, New York, 2007).  https://doi.org/10.1016/0025-5416(87)90343-0 Google Scholar
  3. 3.
    A. Goldman, Modern Ferrite Technology (Van Nostrand Reinhold, New York, 1990). http://www.worldcat.org/title/modern-ferrite-technology/oclc/645764348?referer=di&ht=edition. Accessed 22 September 2017
  4. 4.
    N.A. Spaldin, Magnetic Materials: Fundamentals And Applications (Cambridge University Press, Cambridge, 2011)Google Scholar
  5. 5.
    R. Liu, H. Fu, H. Yin, P. Wang, L. Lu, Y. Tao, A facile sol combustion and calcination process for the preparation of Congo red. Powder Technol. 274, 418–425 (2015).  https://doi.org/10.1016/j.powtec.2015.01.045 CrossRefGoogle Scholar
  6. 6.
    Y. Wang, Y. Huang, Q. Wang, M. Zong, Preparation and electromagnetic properties of graphene-supported. Powder Technol. 249, 304–308 (2013).  https://doi.org/10.1016/j.powtec.2013.08.024 CrossRefGoogle Scholar
  7. 7.
    E. Oumezzine, S. Hcini, M. Baazaoui, E.K. Hlil, M. Oumezzine, Structural, magnetic and magnetocaloric properties of Pechini sol-gel method aqueous solution. Powder Technol. 278, 189–195 (2015).  https://doi.org/10.1016/j.powtec.2015.03.022 CrossRefGoogle Scholar
  8. 8.
    T. Sathitwitayakul, M.V. Kuznetsov, I.P. Parkin, R. Binions, The gas sensing properties of some complex metal oxides prepared by self-propagating high-temperature synthesis. Mater. Lett. 75, 36–38 (2012).  https://doi.org/10.1016/J.MATLET.2012.02.003 CrossRefGoogle Scholar
  9. 9.
    M. Kurian, D.S. Nair, Effect of preparation conditions on nickel zinc ferrite nanoparticles: a comparison between sol–gel auto combustion and co-precipitation methods. J. Saudi Chem. Soc. 20, S517–S522 (2016).  https://doi.org/10.1016/J.JSCS.2013.03.003 CrossRefGoogle Scholar
  10. 10.
    S.K. Pradhan, S. Bid, M. Gateshki, V. Petkov, Microstructure characterization and cation distribution of nanocrystalline magnesium ferrite prepared by ball milling. Mater. Chem. Phys. 93, 224–230 (2005).  https://doi.org/10.1016/J.MATCHEMPHYS.2005.03.017 CrossRefGoogle Scholar
  11. 11.
    V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P.V. Parimi, X. Zuo, C.E. Patton, M. Abe, O. Acher, C. Vittoria, Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035–2047 (2009).  https://doi.org/10.1016/J.JMMM.2009.01.004 CrossRefGoogle Scholar
  12. 12.
    S. Zahi, Synthesis, permeability and microstructure of the optimal nickel-zinc ferrites by sol-gel route. J. Electromagn. Anal. Appl. 2, 56–62 (2010).  https://doi.org/10.4236/jemaa.2010.21009 Google Scholar
  13. 13.
    S. Aliyeva, S. Babayev, T. Mehdiyev, Raman spectra of Ni1−XZnXFe2O4 nanopowders. J. Raman Spectrosc. 49, 271–278 (2018).  https://doi.org/10.1002/jrs.5276 CrossRefGoogle Scholar
  14. 14.
    N. Velinov, E. Manova, T. Tsoncheva, C. Estournès, D. Paneva, K. Tenchev, V. Petkova, K. Koleva, B. Kunev, I. Mitov, Infrared diffuse reflectance spectra of micropowders of Ni1−xZnxFe2O4 ferrites. Phys. Solid State 59, 528–533 (2017).  https://doi.org/10.1016/j.solidstatesciences.2012.05.023 Google Scholar
  15. 15.
    A.A. Al-Ghamdi, F.S. Al-Hazmi, L.S. Memesh, F.S. Shokr, L.M. Bronstein, Effect of mechanochemical synthesis on the structure, magnetic and optical behavior of Ni1−xZnxFe2O4 spinel ferrites. Ceram. Int. 43, 6192–6200 (2017).  https://doi.org/10.1016/j.ceramint.2017.02.017 CrossRefGoogle Scholar
  16. 16.
    N.N. Jiang, Y. Yang, Y.X. Zhang, J.P. Zhou, P. Liu, C.Y. Deng, Influence of zinc concentration on structure, complex permittivity and permeability of Ni-Zn ferrites at high frequency. J. Magn. Magn. Mater. 401, 370–377 (2016).  https://doi.org/10.1016/j.jmmm.2015.10.003 CrossRefGoogle Scholar
  17. 17.
    D.K. Pradhan, P. Misra, V.S. Puli, S. Sahoo, D.K. Pradhan, R.S. Katiyar, Studies on structural, dielectric, and transport properties of Ni0.65Zn0.35Fe2O4. J. Appl. Phys. 115, 243904 (2014).  https://doi.org/10.1063/1.4885420 CrossRefGoogle Scholar
  18. 18.
    S. Mukherjee, S. Pradip, A.K. Mishra, D. Das, Zn substituted NiFe2O4 with very high saturation magnetization and negligible dielectric loss synthesized via a soft chemical route. Appl. Phys. A 116, 389–393 (2014).  https://doi.org/10.1007/s00339-013-8140-2 CrossRefGoogle Scholar
  19. 19.
    W. Yan, Q. Li, H. Zhong, Z. Zhong, Characterization and low-temperature sintering of Ni0.5Zn0.5Fe2O4 nano-powders prepared by refluxing method. Powder Technol. 192, 23–26 (2009).  https://doi.org/10.1016/j.powtec.2008.11.010 CrossRefGoogle Scholar
  20. 20.
    N. Dogan, A. Bingolbali, L. Arda, D. Akcan, Synthesis, structure, and magnetic properties of Ni1−xZnxFe2O4 nanoparticles. J. Supercond. Nov. Magn. 30, 3611–3617 (2016).  https://doi.org/10.1007/s10948-016-3899-y CrossRefGoogle Scholar
  21. 21.
    M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, M. Hamadanian, S. Bagheri, Facile synthesis and characterization of CdTiO3 nanoparticles by Pechini sol–gel method. J. Mater. Sci. Mater. Electron. 28, 14965–14973 (2017).  https://doi.org/10.1007/s10854-017-7369-5 CrossRefGoogle Scholar
  22. 22.
    M.A. Gabal, S. Kosa, T.S. Al Mutairi, Structural and magnetic properties of Ni1−xZnxFe2O4 nano-crystalline ferrites prepared via novel chitosan method. J. Mol. Struct. 1063, 269–273 (2014).  https://doi.org/10.1016/j.molstruc.2014.01.070 CrossRefGoogle Scholar
  23. 23.
    J.M. Yang, K.L. Yang, An optimal low-temperature tartrate precursor method for the synthesis of monophasic nanosized ZnFe2O4. J. Nanoparticle Res. 11, 1739–1750 (2009).  https://doi.org/10.1007/s11051-008-9537-2 CrossRefGoogle Scholar
  24. 24.
    P.Y. Reyes-Rodríguez, D.A. Cortés-Hernández, J.C. Escobedo-Bocardo, J.M. Almanza-Robles, H.J. Sánchez-Fuentes, A. Jasso-Terán, L.E. De León-Prado, J. Méndez-Nonell, G.F. Hurtado-López, Structural and magnetic properties of Mg-Zn ferrites (Mg1−xZnxFe2O4) prepared by sol-gel method. J. Magn. Magn. Mater. 427, 268–271 (2017).  https://doi.org/10.1016/j.jmmm.2016.10.078 CrossRefGoogle Scholar
  25. 25.
    W. Cai, C. Fu, W. Hu, G. Chen, X. Deng, Effects of microwave sintering power on microstructure, dielectric, ferroelectric and magnetic properties of bismuth ferrite ceramics. J. Alloys Compd. 554, 64–71 (2013).  https://doi.org/10.1016/j.jallcom.2012.11.154 CrossRefGoogle Scholar
  26. 26.
    H.S.M. Rahimi, P. Kamelii, M. Ranjbar, H. Hajihashemi, The effect of zinc doping on the structural and magnetic properties of Ni1−xZnxFe2O4. J. Mater. Sci. 48, 2969–2976 (2013).  https://doi.org/10.1007/s10853-012-7074-y CrossRefGoogle Scholar
  27. 27.
    M. Ajmal, A. Maqsood, Influence of zinc substitution on structural and electrical properties of Ni1−XZnXFe2O4 ferrites. Mater. Sci. Eng. B 139, 164–170 (2007).  https://doi.org/10.1016/j.mseb.2007.02.004 CrossRefGoogle Scholar
  28. 28.
    A.R. Denton, N.W. Ashcroft, Vegard’s law. Phys. Rev. A 43, 3161–3164 (1991).  https://doi.org/10.1103/PhysRevA.43.3161 CrossRefGoogle Scholar
  29. 29.
    B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn (Prentice-Hall, Englewood Cliffs, 2001). doi:citeulike-article-id:3998040Google Scholar
  30. 30.
    A. Khorsand Zak, W.H. Abd. M.E. Majid, R. Abrishami, Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci. 13, 251–256 (2011).  https://doi.org/10.1016/j.solidstatesciences.2010.11.024 CrossRefGoogle Scholar
  31. 31.
    C. Upadhyay, H.C. Verma, S. Anand, Cation distribution in nanosized Ni-Zn ferrites. J. Appl. Phys. 95, 5746–5751 (2004).  https://doi.org/10.1063/1.1699501 CrossRefGoogle Scholar
  32. 32.
    P. Ravindranathan, K.C. Patil, Novel solid solution precursor method for the preparation of ultrafine Ni-Zn ferrites. J. Mater. Sci. 22, 3261–3264 (1987).  https://doi.org/10.1007/BF01161190 CrossRefGoogle Scholar
  33. 33.
    M. Kurian, D.S. Nair, Effect of preparation conditions on nickel zinc ferrite nanoparticles: a comparison between sol-gel auto combustion and co-precipitation methods. J. Saudi Chem. Soc. 28, S517–S522 (2016).  https://doi.org/10.1016/j.jscs.2013.03.003 CrossRefGoogle Scholar
  34. 34.
    S.S. Deshmukh, A.V. Humbe, A. Kumar, R.G. Dorik, K.M. Jadhav, Urea assisted synthesis of Ni1−xZnxFe2O4 (0 ≤ x ≤ 0.8): magnetic and Mössbauer investigations. J. Alloys Compd. 704, 227–236 (2017).  https://doi.org/10.1016/j.jallcom.2017.01.176 CrossRefGoogle Scholar
  35. 35.
    W.A.A. Bayoumy, Synthesis and characterization of nano-crystalline Zn-substituted Mg-Ni-Fe-Cr ferrites via surfactant-assisted route. J. Mol. Struct. 1056–1057, 285–291 (2014).  https://doi.org/10.1016/j.molstruc.2013.10.056 CrossRefGoogle Scholar
  36. 36.
    R. Hassan, J. Hassan, M. Hashim, S. Paiman, R.S. Azis, Morphology and dielectric properties of single sample Ni0.5Zn0.5Fe2O4 nanoparticles prepared via mechanical alloying. J. Adv. Ceram. 3, 306–316 (2014).  https://doi.org/10.1007/s40145-014-0122-0 CrossRefGoogle Scholar
  37. 37.
    K. Suttiponparnit, J. Jiang, M. Sahu, S. Suvachittanont, T. Charinpanitkul, P. Biswas, Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res. Lett. 6, 1–8 (2011).  https://doi.org/10.1007/s11671-010-9772-1 Google Scholar
  38. 38.
    V.J. Angadi, B. Rudraswamy, E. Melagiriyappa, H.M. Somashekarappa, H. Nagabhushana, Effect of gamma irradiation on dielectric properties of manganese zinc nanoferrites. AIP Conf. Proc. 1591, 9–12 (2014).  https://doi.org/10.1063/1.4872578 Google Scholar
  39. 39.
    R. Peelamedu, C. Grimes, D. Agrawal, R. Roy, P. Yadoji, Ultralow dielectric constant nickel–zinc ferrites using microwave sintering. J. Mater. Res. 18, 2292–2295 (2003).  https://doi.org/10.1557/JMR.2003.0320 CrossRefGoogle Scholar
  40. 40.
    A. Thakur, P. Thakur, J.H. Hsu, Enhancement in dielectric and magnetic properties of In3+ substituted Ni-Zn nano-ferrites by coprecipitation method. IEEE Trans. Magn. 47, 4336–4339 (2011).  https://doi.org/10.1109/TMAG.2011.2156394 CrossRefGoogle Scholar
  41. 41.
    G. Sathishkumar, C. Venkataraju, K. Sivakumar, Synthesis, structural and dielectric studies of nickel substituted cobalt-zinc ferrite. Mater. Sci. Appl. 1, 19–24 (2010).  https://doi.org/10.4236/msa.2010.11004 Google Scholar
  42. 42.
    G. Ranga Mohan, D. Ravinder, A.V. Ramana Reddy, B.S. Boyanov, Dielectric properties of polycrystalline mixed nickel-zinc ferrites. Mater. Lett. 40, 39–45 (1999).  https://doi.org/10.1016/S0167-577X(99)00046-4 CrossRefGoogle Scholar
  43. 43.
    M. Azizar Rahman, A.K.M. Akther Hossain, Electrical transport properties of Mn–Ni–Zn ferrite using complex impedance spectroscopy. Phys. Scr. 89, 25803 (2014).  https://doi.org/10.1088/0031-8949/89/02/025803 CrossRefGoogle Scholar
  44. 44.
    A. Pradeep, P. Priyadharsini, G. Chandrasekaran, Structural, magnetic and electrical properties of nanocrystalline zinc ferrite. J. Alloys Compd. 509, 3917–3923 (2011).  https://doi.org/10.1016/j.jallcom.2010.12.168 CrossRefGoogle Scholar
  45. 45.
    T.S. Laverghetta, Modern Microwave Measurements and Techniques (Artech House, London, 1988). http://us.artechhouse.com/Modern-Microwave-Measurements-and-Techniques-P292.aspx. Accessed 21 October 2017
  46. 46.
    A. Verma, D.C. Dube, Processing of nickel-zinc ferrites via the citrate precursor route for high-frequency applications. J. Am. Ceram. Soc. 88, 519–523 (2005).  https://doi.org/10.1111/j.1551-2916.2005.00098.x CrossRefGoogle Scholar
  47. 47.
    B.P. Jacob, S. Thankachan, S. Xavier, E.M. Mohammed, Dielectric behavior and AC conductivity of Tb3+ doped Ni0.4Zn0.6Fe2O4 nanoparticles. J. Alloys Compd. 541, 29–35 (2012).  https://doi.org/10.1016/j.jallcom.2012.07.033 CrossRefGoogle Scholar
  48. 48.
    S.F. Mansour, Frequency and composition dependence on the dielectric properties for Mg-Zn ferrite. Egypt J. Solids 28, 263–273 (2005)Google Scholar
  49. 49.
    E. Pervaiz, I.H. Gul, Influence of rare earth (Gd3+) on structural, gigahertz dielectric and magnetic studies of cobalt ferrite. J. Phys. Conf. Ser. 439, 12015 (2013).  https://doi.org/10.1088/1742-6596/439/1/012015 CrossRefGoogle Scholar
  50. 50.
    S. Singh, N.K. Ralhan, R.K. Kotnala, K.C. Verma, Nanosize dependent electrical and magnetic properties of NiFe2O4 ferrite. Indian J. Pure Appl. Phys. 50, 739–743 (2012). http://nopr.niscair.res.in/bitstream/123456789/14782/1/IJPAP 50%2810%29739-743.pdf. Accessed 21 October 2017
  51. 51.
    M. Belal Hossen, A.K.M. Akther Hossain, Influence of Al3+ substitution on impedance spectroscopy studies of Ni0.27Cu0.10Zn0.63AlxFe2–xO4. Adv. Mater. Lett. 6, 810–815 (2015).  https://doi.org/10.5185/amlett.2015.5854 Google Scholar
  52. 52.
    B. Kaur, L. Singh, V. Annapu Reddy, D.Y. Jeong, N. Dabra, J.S. Hundal, AC impedance spectroscopy, conductivity and optical studies of sr doped bismuth ferrite nanocomposites. Int. J. Electrochem. Sci. 11, 4120–4135 (2016).  https://doi.org/10.20964/110353 CrossRefGoogle Scholar
  53. 53.
    K.M. Batoo, Structural and electrical properties of Cu doped NiFe2O4 nanoparticles prepared through modified citrate gel method. J. Phys. Chem. Solids 72, 1400–1407 (2011).  https://doi.org/10.1016/j.jpcs.2011.08.005 CrossRefGoogle Scholar
  54. 54.
    M. Hashim, S.E. Alimuddin, S. Shirsath, R. Kumar, A.S. Kumar, J. Roy, R.K. Shah, Kotnala, Preparation and characterization chemistry of nano-crystalline Ni-Cu-Zn ferrite. J. Alloys Compd. 549, 348–357 (2013).  https://doi.org/10.1016/j.jallcom.2012.08.039 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. V. Santhosh Kumar
    • 1
  • G. J. Shankarmurthy
    • 2
  • E. Melagiriyappa
    • 3
  • K. K. Nagaraja
    • 4
  • H. S. Jayanna
    • 5
  • M. P. Telenkov
    • 4
  1. 1.Department of PhysicsJain Institute of TechnologyDavanagereIndia
  2. 2.University BDT College of EngineeringDavanagereIndia
  3. 3.Department of ScienceSJM PolytechnicChitradurgaIndia
  4. 4.National University of Science and Technology “MISiS”MoscowRussia
  5. 5.Department of PhysicsKuvempu UniversityShankaraghattaIndia

Personalised recommendations