Structural, morphological and optical studies of nanostructured cadmium oxide films: the role of pH

  • Halit CavusogluEmail author


In this work, nanocrystalline cadmium oxide (CdO) films were deposited on glass substrates for various pH values ranging from 11.3 to 12.5 by successive ionic layer adsorption and reaction (SILAR) technique. To obtain good film stoichiometry, the annealing of films in static air at a temperature of 623 K for 1 h was carried out. The comparison of structural, morphological and optical properties of CdO films at different pH of the solution has been studied. The effects of pH on the crystal structures, the orientation of crystallization and crystallite sizes i.e., structural properties of the films were analyzed with X-ray diffraction (XRD). XRD analysis revealed the polycrystalline nature of the CdO films with cubic structure and show preferential orientation along (111) and (200) planes. The surface morphology of the prepared films having different pH values was investigated by scanning electron microscope (SEM). The optical band gap of nanocrystalline CdO films at different pH has been measured using Ultraviolet–Visible (UV–Vis) spectroscopy. The optical properties showed that a significant reduction in the optical band gap is observed from 3.26 to 2.35 eV by increasing the pH value of the solutions from 11.3 to 12.5, respectively.



This work was partially supported by the Scientific Research and Project Council of Selcuk University (BAP) Project No: 17703069.


  1. 1.
    B. Hymavathi, B.R. Kumar, T.S. Rao, Mater. Today 2, 1510–1517 (2015)CrossRefGoogle Scholar
  2. 2.
    F. Yakuphanoglu, Sol. Energy 85, 2704–2709 (2011)CrossRefGoogle Scholar
  3. 3.
    S. Kumar, B. Ahmed, A.K. Ojha, J. Das, A. Kumar, Mater. Res. Bull. 90, 224–231 (2017)CrossRefGoogle Scholar
  4. 4.
    T. Krishnakumar, R. Jayaprakash, T. Prakash, D. Sathyaraj, N. Donato, S. Licoccia, M. Latino, A. Stassi, G. Neri, Nanotechnology 22, 325501 (2011)CrossRefGoogle Scholar
  5. 5.
    N. Rajesh, J.C. Kannan, T. Krishnakumar, A. Bonavita, S.G. Leonardi, G. Neri, Ceram. Int. 41, 14766–14772 (2015)CrossRefGoogle Scholar
  6. 6.
    D.M. Carballeda-Galicia, R. Castanedo-Pérez, O. Jiménez-Sandoval, S. Jiménez-Sandoval, G. Torres-Delgado, C.I. Zúñiga-Romero, Thin Solid Films 371, 105–108 (2000)CrossRefGoogle Scholar
  7. 7.
    J. Santos-Cruz, G. Torres-Delgado, R. Castanedo-Perez, S. Jiménez-Sandoval, O. Jiménez-Sandoval, C.I. Zúñiga-Romero, J.M. Marín, O. Zelaya-Angel. Thin Solid Films 493, 83–87 (2005)CrossRefGoogle Scholar
  8. 8.
    K. Siraj, M. Khaleeq-ur-Rahman, S.I. Hussain, M.S. Rafique, S. Anjum, J. Alloys Compd. 509, 6756–6762 (2011)CrossRefGoogle Scholar
  9. 9.
    T.K. Subramanyam, B. Srinivasulu Naidu, S. Uthanna, Appl. Surf. Sci. 169–170, 529–534 (2001)CrossRefGoogle Scholar
  10. 10.
    Y.R. Sui, Y.P. Song, Y.J. Wu, J.H. Lang, X.W. Meng, S.Q. Lv, B. Yao, J.H. Yang, Ceram. Int. 42, 15166–15170 (2016)CrossRefGoogle Scholar
  11. 11.
    Z. Zhao, D.L. Morel, C.S. Ferekides, Thin Solid Films 413, 203–211 (2002)CrossRefGoogle Scholar
  12. 12.
    T. Terasako, Y. Ogura, K. Ohmae, S. Fujimoto, M. Yagi, S. Shirakata, Surf. Coat. Technol. 230, 245–253 (2013)CrossRefGoogle Scholar
  13. 13.
    X. Han, R. Liu, Z. Xu, W. Chen, Y. Zheng, Electrochem. Commun. 7, 1195–1198 (2005)CrossRefGoogle Scholar
  14. 14.
    A. Abdolahzadeh Ziabari, F.E. Ghodsi, G. Kiriakidis, Surf. Coat. Technol. 213, 15–20 (2012)CrossRefGoogle Scholar
  15. 15.
    J. Herrero, M.T. Gutiérrez, C. Guillén, J.M. Doña, M.A. Martínez, A.M. Chaparro, R. Bayón, Thin Solid Films 361–362, 28–33 (2000)CrossRefGoogle Scholar
  16. 16.
    H.H. Ahmed, Mater. Sci. Semicond. Process. 66, 215–222 (2017)CrossRefGoogle Scholar
  17. 17.
    M.D. Uplane, P.N. Kshirsagar, B.J. Lokhande, C.H. Bhosale, Mater. Chem. Phys. 64, 75–78 (2000)CrossRefGoogle Scholar
  18. 18.
    P. Velusamy, R.R. Babu, K. Ramamurthi, E. Elangovan, J. Viegas, M.S. Dahlem, M. Arivanandhan, Ceram. Int. 42, 12675–12685 (2016)CrossRefGoogle Scholar
  19. 19.
    R.S. Mane, S.-H. Han, Electrochem. Commun. 7, 205–208 (2005)CrossRefGoogle Scholar
  20. 20.
    R. Aydin, B. Şahin, J. Alloys Compd. 705, 9–13 (2017)CrossRefGoogle Scholar
  21. 21.
    O. Gençyılmaz, T. Taşköprü, J. Alloys Compd. 695, 1205–1212 (2017)CrossRefGoogle Scholar
  22. 22.
    A.T. Ravichandran, K. Dhanabalan, S. Valanarasu, A. Vasuhi, A. Kathalingam, J. Mater. Sci. 26, 921–926 (2015)Google Scholar
  23. 23.
    K.C. Preetha, K.V. Murali, A.J. Ragina, K. Deepa, T.L. Remadevi, Curr. Appl. Phys. 12, 53–59 (2012)CrossRefGoogle Scholar
  24. 24.
    S. Valanarasu, V. Dhanasekaran, M. Karunakaran, R. Chandramohan, T. Mahalingam, J. Nanosci. Nanotechnol. 14, 4286–4291 (2014)CrossRefGoogle Scholar
  25. 25.
    T.H. Sajeesh, K.B. Jinesh, C. Sudha Kartha, K.P. Vijayakumar, Appl. Surf. Sci. 258, 6870–6875 (2012)CrossRefGoogle Scholar
  26. 26.
    S. Kose, F. Atay, V. Bilgin, I. Akyuz, Int. J. Hydrogen Energy 34, 5260–5266 (2009)CrossRefGoogle Scholar
  27. 27.
    G.B. Harris, Phil. Mag. 43, 113–123 (1952)CrossRefGoogle Scholar
  28. 28.
    C.S. Barret, T.B. Massalski, Structure of Metals Pergamon Press, Oxford, 1980Google Scholar
  29. 29.
    H. Wang, J.-Z. Xu, J.-J. Zhu, H.-Y. Chen, J. Cryst. Growth 244, 88–94 (2002)CrossRefGoogle Scholar
  30. 30.
    L.S. Birks, H. Friedman, J. Appl. Phys. 17, 687–692 (1946)CrossRefGoogle Scholar
  31. 31.
    I. Kosacki, T. Suzuki, H.U. Anderson, P. Colomban, Solid State Ion. 149, 99–105 (2002)Google Scholar
  32. 32.
    M. Ashraf, S.M.J. Akhtar, A.F. Khan, Z. Ali, A. Qayyum, J. Alloys Compd. 509, 2414–2419 (2011)CrossRefGoogle Scholar
  33. 33.
    P.K.R. Kalita, B.K. Sarma, H.L. Das, Bull. Mater. Sci. 23, 313–317 (2000)CrossRefGoogle Scholar
  34. 34.
    E. Rosencher, B. Vinter, Cambridge University Press, Optoelectronics, (2002)Google Scholar
  35. 35.
    J. Santos-Cruz, G. Torres-Delgado, R. Castanedo-Perez, C.I. Zúñiga-Romero, O. Zelaya-Angel, Thin Solid Films 515, 5381–5385 (2007)CrossRefGoogle Scholar
  36. 36.
    K. Gurumurugan, D. Mangalaraj, S.K. Narayandass, C. Balasubramanian, Phys. Status Solidi A 143, 85–91 (1994)CrossRefGoogle Scholar
  37. 37.
    K.T. Ramakrishna Reddy, G.M. Shanthini, D. Johnston, R.W. Miles, Thin Solid Films 427, 397–400 (2003)CrossRefGoogle Scholar
  38. 38.
    K. Mageshwari, R. Sathyamoorthy, Mater. Sci. Semicond. Process. 16, 337–343 (2013)CrossRefGoogle Scholar
  39. 39.
    S. Visalakshi, R. Kannan, S. Valanarasu, A. Kathalingam, S. Rajashabala, J. Mater. Sci. Mater. Electron. 27, 9179–9185 (2016)CrossRefGoogle Scholar
  40. 40.
    R.K. Gupta, F. Yakuphanoglu, F.M. Amanullah, Physica E 43, 1666–1668 (2011)CrossRefGoogle Scholar
  41. 41.
    P. Kumbhakar, D. Singh, C.S. Tiwary, A.K. Mitra, Chalcogenide Lett. 5, 387–394 (2008)Google Scholar
  42. 42.
    A. Salah, M.B. Mansour, I.M. Mohamed, S. Azzouz, Y. Elnaby, Badr, Appl. Surf. Sci. 353, 112–117 (2015)CrossRefGoogle Scholar
  43. 43.
    M. Green, Z. Hussain, J. Appl. Phys. 69, 7788–7796 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceSelcuk UniversityKonyaTurkey

Personalised recommendations