Advertisement

Electrical properties of epoxy/ZnO nano-composite

  • Xinyu Wang
  • Qingguo Chen
  • Hongda Yang
  • Kai Zhou
  • Xin Ning
Article
  • 28 Downloads

Abstract

The effects of nano-particles on the electrical properties of the epoxy/ZnO nano-composites are studied and the nonlinear conduction characteristics of the nano-composites are discussed. The morphology structure, relative permittivity, DC breakdown strength and DC conductivity of the nano-composites are measured. Micro-structure analysis shows that the ZnO nano-particles were well dispersed in the epoxy matrix. Experimental results show that the relative permittivity and DC conductivity of epoxy nano-composite with the filler loading of 0.5 wt% are lower than those of pure epoxy and the other nano-composites, but the 0.5 wt% has the highest breakdown strength among the epoxy/ZnO nano-composites. In addition, when the filler loading is larger than 0.5 wt%, the epoxy/ZnO nano-composite exhibits a distinct nonlinear conduction character, namely, that the DC conductivity is greatly dependent on the applied electric field. The variation of the electrical properties and the nonlinear conduction character against the filler loading may be attributed to the interaction zone around the nano-particles.

Notes

Acknowledgements

This work was supported by the National Science Foundation of China (Nos. 51677046, 51407051).

References

  1. 1.
    V.A. Zakrevskii, N.T. Sudar, A. Zaopo, Y.A. Dubitsky, Mechanism of electrical degradation and breakdown of insulating polymers. J. Appl. Phys. 93, 2135–2140 (2003)CrossRefGoogle Scholar
  2. 2.
    J.M. Yang, X. Wang, H. Zhao, W.L. Zhang, M.Z. Xu, Influence of moisture absorption on the DC conduction and space charge property of MgO/LDPE nanocomposite. IEEE Trans. Dielectr. Electr. Insul. 21, 1957–1964 (2014)CrossRefGoogle Scholar
  3. 3.
    H. Hama, T. Hikosaka, S. Okabe, H. Okubo, Cross-equipment study on charging phenomena of solid insulators in high voltage equipment. IEEE Trans. Dielectr. Electr. Insul. 14, 508–519 (2007)CrossRefGoogle Scholar
  4. 4.
    D.-E.A. Mansour, H. Kojima, N. Hayakawa, F. Endo, H. Okubo, Surface charge accumulation and partial discharge activity for small gaps of electrode/epoxy interface. IEEE Trans. Dielectr. Electr. Insul. 16, 1150–1157 (2009)CrossRefGoogle Scholar
  5. 5.
    T. Tanaka, G.C. Montanari, R. Mulhaupt, Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications. IEEE Trans. Dielectr. Electr. Insul. 11, 763–784 (2004)CrossRefGoogle Scholar
  6. 6.
    T. Takada, Y. Hayase, Y. Tanaka, T. Okamoto, Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposite. IEEE Trans. Dielectr. Electr. Insul. 15, 152–160 (2008)CrossRefGoogle Scholar
  7. 7.
    B.Y. Zhang, W.Q. Gao, P.F. Chu, Z. Zhang, G.X. Zhang, Trap-modulated carrier transport tailors the dielectric properties of alumina/epoxy nanocomposites. J. Mater. Sci. Mater. Electron. 29, 1964–1974 (2018)CrossRefGoogle Scholar
  8. 8.
    B.X. Du, J.W. Zhang, Y. Gao, Effects of TiO2 particles on surface charge of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 19, 755–762 (2012)CrossRefGoogle Scholar
  9. 9.
    F.Q. Tian, Q.Q. Lei, X. Wang, Y. Wang, Investigation of electrical properties of LDPE/ZnO nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 19, 763–769 (2012)CrossRefGoogle Scholar
  10. 10.
    K. Tavernier, B.R. Varlow, D.W. Auckland, M. Ugur, Improvement in electrical insulators by nonlinear fillers. IEEE Proc. Sci. Meas. Technol. 146, 88–94 (1999)CrossRefGoogle Scholar
  11. 11.
    K.P. Donnelly, B.R. Varlow, Nonlinear dc and ac conductivity in electrically insulating composites. IEEE Trans. Dielectr. Electr. Insul. 10, 610–614 (2003)CrossRefGoogle Scholar
  12. 12.
    X. Wang, J.K. Nelson, L.S. Schadler, H. Hillborg, Mechanisms leading to nonlinear electrical response of a nano p-SiC/silicone rubber composite. IEEE Trans. Dielectr. Electr. Insul. 17, 1687–1696 (2010)CrossRefGoogle Scholar
  13. 13.
    T. Christen, L. Donzel, F. Greuter, Nonlinear resistive electric field grading part 1: theory and simulation. IEEE Electr. Insul. Mag. 26, 47–59 (2011)CrossRefGoogle Scholar
  14. 14.
    S.M. Lebedev, O.S. Gefle, A.E. Strizhkov, Novel polymeric composites with nonlinear current-voltage characteristic. IEEE Trans. Dielectr. Electr. Insul. 20, 289–295 (2013)CrossRefGoogle Scholar
  15. 15.
    J.I. Hong, L.S. Schadler, R.W. Siegel, E. Martensson, Rescaled electrical properties of ZnO/low density polyethylene nanocomposites. Appl. Phys. Lett. 82, 1956–1958 (2003)CrossRefGoogle Scholar
  16. 16.
    J.I. Hong, P. Winberg, L.S. Schadler, R.W. Siegel, Dielectric properties of zinc oxide/low density polyethylene nanocomposites. Mater. Lett. 59, 473–476 (2005)CrossRefGoogle Scholar
  17. 17.
    S.C. Tjong, G.D. Liang, Electrical properties of low density polyethylene/ZnO nanocomposites. Mater. Chem. Phys. 100, 1–5 (2006)CrossRefGoogle Scholar
  18. 18.
    S. Singha, M.J. Thomas, Influence of filler loading on dielectric properties of epoxy-ZnO nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 16, 531–542 (2009)CrossRefGoogle Scholar
  19. 19.
    N.S. Jyothi, T.S. Ramu, M. Mandlik, Temperature distribution in resin impregnated paper insulation for transformer bushings. IEEE Trans. Dielectr. Electr. Insul. 17, 931–938 (2010)CrossRefGoogle Scholar
  20. 20.
    D.-E.A. Mansour, H. Kojima, N. Hayakawa, F. Endo, H. Okubo, Partial discharges and associated mechanisms for micro gap delamination at epoxy spacer in GIS. IEEE Trans. Dielectr. Electr. Insul. 17, 855–861 (2010)CrossRefGoogle Scholar
  21. 21.
    K. Fukunaga, T. Maeno, K. Okamoto, Three-dimensional space charge observation of ion migration in a metal-base printed circuit board. IEEE Trans. Dielectr. Electr. Insul. 10, 458–462 (2003)CrossRefGoogle Scholar
  22. 22.
    S. Singha, M.J. Thomas, Dielectric properties of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 15, 12–23 (2008)CrossRefGoogle Scholar
  23. 23.
    M. Roy, J.K. Nelson, R.K. MacCrone, L.S. Schadler, C.W. Reed, R. Keefe, W. Zenger, Polymer nanocomposite dielectrics—the role of the interface. IEEE Trans. Dielectr. Electr. Insul. 12, 629–643 (2005)CrossRefGoogle Scholar
  24. 24.
    Y.S. Han, S.T. Li, D.M. Min, Nonlinear conduction and surface potential decay of epoxy/SiC nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 24, 3154–3164 (2017)CrossRefGoogle Scholar
  25. 25.
    S.T. Li, G.L. Yin, G. Chen, J.Y. Li, S.N. Bai, L.S. Zhong, Y.X. Zhang, Q.Q. Lei, Short-term breakdown and long-term failure in nanodielectrics: a review. IEEE Trans. Dielectr. Electr. Insul. 17, 1523–1535 (2010)CrossRefGoogle Scholar
  26. 26.
    S.T. Li, G.L. Yin, S. Bai, J.Y. Li, A new potential barrier model in epoxy resin nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 18, 1535–1543 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Engineering Dielectrics and Its Application, Ministry of EducationHarbin University of Science and TechnologyHarbinChina

Personalised recommendations