Determining electrical and dielectric parameters of Al/ZnS-PVA/p-Si (MPS) structures in wide range of temperature and voltage

  • Nalan BarazEmail author
  • İbrahim Yücedağ
  • Yashar Azizian-Kalandaragh
  • Şemsettin Altındal


In this study zinc sulphide (ZnS) nanostructures have been prepared by microwave-assisted method in presence of polyvinyl alcohol (PVA) as a capping agent. The structural and morphological properties of prepared sample have been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). These analyses confirm that the sample has nano structure. They have been used this sample to fabrication of Al/ZnS-PVA/p-Si structure. The effect of temperature and voltage on the electrical and dielectric parameters of the Al/ZnS-PVA/p-Si (MPS) structures has been investigated in the wide range of temperature (140–340 K) and voltage (− 2 V to + 4 V) using capacitance/conductance-voltage (C/G–V) measurements at 500 kHz. Experimental measurements revealed that the values of C/G–V increase with increasing temperature but the values of series resistance (Rs) increase with decreasing temperature. As well as the dielectric parameters such as the values of real and imaginary parts of the dielectric constants (ε′ and ε″) and electric modules (M′ and M″), loss tangent (tanδ), and ac electrical conductivity (σac) were obtained using C and G/ω data. These parameters are found out as strong functions of temperature and voltage. While the values of ε′, ε″ and tanδ increase with increasing temperature, the values of σac, M′ and M″ decrease. The Arrhenius plot (ln(σac) vs q/kT) shows two distinct linear ranges with different slopes or activation energies (Ea) at low (140–230 K) and high (260–340 K) temperatures. Both values of Rs and (ZnS-PVA) interfacial layers are also very effective parameters on the electric and dielectric properties.



This study was supported by Gazi University Scientific Research Project. (Project Number: GU-BAP.05/2018-10).


  1. 1.
    İ Yücedağ, Optoelectron. and Adv. Mater. Rapid Commun. 3, 612 (2009)Google Scholar
  2. 2.
    N.B. Ukah, D. Adil, J. Granstrom, R.K. Gupta, K. Ghosh, S. Guha, Org. Electron. 12, 1580–1587 (2011)CrossRefGoogle Scholar
  3. 3.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn., (Wiley, New York, 1981)Google Scholar
  4. 4.
    A. Tataroğlu, İ Yücedağ, Ş. Altındal, Microelectron. Eng. 85, 1518–1523 (2008)CrossRefGoogle Scholar
  5. 5.
    M. Sharma, S.K. Tripathi, Mater. Sci. Semicond. Process. 41, 155–161 (2016)CrossRefGoogle Scholar
  6. 6.
    İ. Yücedağ, A. Kaya, Ş. Altindal, Int. J. Modern Phys. B 28, 1450153 (2014)CrossRefGoogle Scholar
  7. 7.
    G. Aras, E. Orhan, A.B. Selçuk, S. Bilge Ocak, M. Ertuğrul, Procedia Soc. Behav. Sci. 195, 1740–1745 (2015)CrossRefGoogle Scholar
  8. 8.
    G. Ersöz, İ. Yücedağ, Y. Azizian-Kalandaragh, İ. Orak, Ş. Altındal, IEEE Trans. Electron. Dev. 63, 2948–2955 (2016)CrossRefGoogle Scholar
  9. 9.
    N. Baraz, İ. Yücedağ, Y. Azizian-Kalandaragh, G. Ersöz, İ. Orak, Ş. Altındal, B. Akbari, H. Akbari, J. Electron. Mater. 46, 4276–4286 (2017)CrossRefGoogle Scholar
  10. 10.
    Y. Asar, T. Asar, Ş Altındal, S. Özçelik, Philos. Mag. 95, 2885–2898 (2015)CrossRefGoogle Scholar
  11. 11.
    S.A. Yerişkin., M. Balbaşı, A. Tataroğlu, J. Appl. Polym. Sci. 133, 145–151 (2016)Google Scholar
  12. 12.
    N.K. Farhana, M.H. Khanmirzaei, S. Ramesh, J. App. Polym. Sci. 134, 45091–45097 (2017)CrossRefGoogle Scholar
  13. 13.
    M.M. Bülbül, S. Zeyrek, S. Altındal, H. Yüzer, Microelectron. Eng. 83, 577–581 (2006)CrossRefGoogle Scholar
  14. 14.
    B. Elaydy, M. Hafez, Bull. Mater. Sci. 33, 149–155 (2010)CrossRefGoogle Scholar
  15. 15.
    M. Gökçen, T. Tunç, S. Altındal, I. Uslu, Cur. App. Phys. 12, 525–530 (2012)CrossRefGoogle Scholar
  16. 16.
    L. Vafayi, S. Gharibe, S. Afshar, J. Appl. Chem. Res. 7, 63 (2013)Google Scholar
  17. 17.
    E.K. Goharshadi, S.H. Sajjadi, R. Mehrkhah, P. Nancarrow, Chem. Eng. J. 209, 113 (2012)CrossRefGoogle Scholar
  18. 18.
    H.V. Chung, P.T. Huy, T.T. An, N.T.M. Thuy, N.D. Chien, J. Korean Phys. Soc. 52, 1562 (2008)CrossRefGoogle Scholar
  19. 19.
    M. Dela Garza, I. Lopez, F. Avina, I. Gomez, J. Ovonic Res. 9, 89 (2013)Google Scholar
  20. 20.
    T. Prakash, R. Jayaprakash, G. Neri, S. Kumar, J. Nanopart. 2103, 1 (2013)Google Scholar
  21. 21.
    N. Baraz, İ Yücedağ, Y. Azizian-Kalandaragh, Ş Altındal, J. Mater. Sci.: Mater. Electron. 28, 1315–1321 (2017)Google Scholar
  22. 22.
    İ Yucedağ, A. Kaya, H. Tecimer, Ş Altındal, Mater. Sci. Semicond. Process. 28, 37–42 (2014)CrossRefGoogle Scholar
  23. 23.
    H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures, 2nd edn. (Wiley, NewYork, 1964)Google Scholar
  24. 24.
    S. Demirezen, Appl. Phys. A 112, 827–833 (2013)CrossRefGoogle Scholar
  25. 25.
    T. Tunç, M. Gökçen, I. Uslu, Appl. Phys. A 109, 649–653 (2012)CrossRefGoogle Scholar
  26. 26.
    K. Ozga, J. Michel, B.D. Nechyporuk, J. Ebothé, I.V. Kityk, A.A. Albassam, A.M. El-Naggar, A.O. Fedorchuk, Phys. E 81, 281–289 (2016)CrossRefGoogle Scholar
  27. 27.
    K. Qiu, D. Qiu, L. Cai, S. Li, W. Wu, Z. Liang, H. Shen, Mater. Lett. 198, 23–26 (2017)CrossRefGoogle Scholar
  28. 28.
    E.H. Nicollian, J.R. Brews, MOS Physics And Technology (Wiley, New York, 1982)Google Scholar
  29. 29.
    S.A. Awan, R.D. Gould, Thin Solid Films 423, 267–272 (2003)CrossRefGoogle Scholar
  30. 30.
    S. Demirezen, A. Kaya, S.A. Yeriskin, M. Balbası, I. Uslu, Results Phys. 6, 180–186 (2016)CrossRefGoogle Scholar
  31. 31.
    A.A. Sattar, S.A. Rahman, Phys. Status Solid. A 200, 415–422 (2003)CrossRefGoogle Scholar
  32. 32.
    A. Cherif, S. Jomni, H. Saghrouni, W. Belgacem, K. Khirounic, L. Beji, J. Alloys Compd. 685, 28–33 (2016)CrossRefGoogle Scholar
  33. 33.
    S. Hlali, A. Farji, N. Hizem, L. Militaru, A. Kalboussi, A. Souifi, J. Alloys Compd. 713, 194–203 (2017)CrossRefGoogle Scholar
  34. 34.
    H. Saghrouni, S. Jomni, W. Belgacem, N. Elghoul, L. Beji, Mat. Sci. Semi. Process. 29, 307–314 (2015)CrossRefGoogle Scholar
  35. 35.
    N. Shiwakoti, A. Bobby, K. Asokan, B. Antony, Mater. Sci. Semicond. Process. 42, 378–382 (2016)CrossRefGoogle Scholar
  36. 36.
    ÇS. Güçlü, A.F. Özdemir, A. Kökce, S. Altindal, Acta Phys. Pol. A 130, 325–330 (2016)CrossRefGoogle Scholar
  37. 37.
    A. Buyukbas, A. Tataroglu, M. Balbaşı, J. Optoelectron. Adv. Mater. 17, 1134–1138 (2015)Google Scholar
  38. 38.
    Ç. Bilkan, Y. Azizian-Kalandaragh, Ş Altındal, R.S. Havigh, Phys. B 500, 154–160 (2016)CrossRefGoogle Scholar
  39. 39.
    E.E. Tanrıkulu, S. Demirezen, Ş Altındal, İ Uslu, J. Mater. Sci.: Mater. Electron. 29, 2890–2898 (2018)Google Scholar
  40. 40.
    S. Altındal Yerişkin, M. Balbaşı, İ Orak, J. Mater. Sci.: Mater. Electron. 28, 14040–14048 (2017)Google Scholar
  41. 41.
    İ Taşçıoğlu, Ö Tüzün Özmen, H.M. Şağban, E. Yağlıoğlu, Ş Altındal, J. Electron. Mater. 46, 2379–2386 (2017)CrossRefGoogle Scholar
  42. 42.
    Z. Wang, W. Zhou, L. Dong, X. Sui, H. Cai, J. Zuo, Q. Chen, J. Alloys Compd. 682, 738–745 (2016)CrossRefGoogle Scholar
  43. 43.
    S. Amrin, V.D. Deshpande, Physica E 87, 317–326 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electric and Energy, Gölyaka Vocational High SchoolDüzce UniversityDüzceTurkey
  2. 2.Department of Computer Engineering, Technology FacultyDüzce UniversityDüzceTurkey
  3. 3.Department of PhysicsUniversity of Mohaghegh ArdabiliArdabilIran
  4. 4.Department of Engineering SciencesSabalan University of Advanced Technologies (SUAT)NaminIran
  5. 5.Department of Physics, Faculty of SciencesGazi UniversityAnkaraTurkey

Personalised recommendations