Photoluminescence, surface photovoltage and photocatalytic properties of BaBiO3 powders

  • Baoquan Men
  • Jianxin Zhang
  • Chunli Diao
  • Xijin LiEmail author
  • Xiangyang Liu
  • Haiwu ZhengEmail author


Polycrystalline BaBiO3 (BBO) powders were synthesized at different calcined temperature using a solid state reaction method. X-ray diffraction analysis confirms that the compounds are a monoclinic structure with space group C2/m. The average particle size increases with the increasing synthesized temperature observed by scanning electronic microscopy. The band gap of the powder is calculated to be about 1.8 eV according to the absorption edge of 620 nm. The surface photovoltage spectroscopy reveals that the powder demonstrates two strongest surface photovoltage response peaks at 400 and 470 nm, which may be due to the surface states caused by the defects and oxygen vacancies in the band gap. The photoluminescence spectra show that the recombination rate of the photo-carriers decreases with the increase of synthesized temperatures, correspondingly, the intensity of the emission spectra decreases. In addition, the strong photocatalytic decoloration effect on methylene blue could further corroborate photo-generated carriers behavior in the BBO powders.



This work was supported by the research projects of the Scientific and Technological Department of Henan Province (172102210013).


  1. 1.
    N. Marinova, S. Valero, J.L. Delgado, Organic and perovskite solar cells: working principles, materials and interfaces. J. Colloid Interface Sci. 488, 373–389 (2017)CrossRefGoogle Scholar
  2. 2.
    J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013)CrossRefGoogle Scholar
  3. 3.
    A. Bera, K.W. Wu, A. Sheikh, E. Alarousu, O.F. Mohammed, T. Wu, Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells. J. Phys. Chem. C 118(49), 28494–28501 (2014)CrossRefGoogle Scholar
  4. 4.
    P. Nazari, F. Ansari, B.A. Nejand, V. Ahmadi, M. Payandeh, M. Salavati-Niasari, Physicochemical interface engineering of CuI/Cu as advanced potential hole-transporting materials/metal contact couples in hysteresis-free ultralow-cost and large-area perovskite solar cells. J. Phys. Chem. C 121, 21935–21944 (2017)CrossRefGoogle Scholar
  5. 5.
    F. Ansari, P. Nazari, M. Payandeh, F.M. Asl, B. Abdollahi-Nejand, V. Ahmadi, J. Taghiloo, M. Salavati-Niasari, Novel nanostructured electron transport compact layer for efficient and large-area perovskite solar cells using acidic treatment of titanium layer. Nanotechnology 29, 075404 (2018)CrossRefGoogle Scholar
  6. 6.
    J.H. Im, I.H. Jang, N. Pellet, M. Gratzel, N.G. Park, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9(11), 927–932 (2014)CrossRefGoogle Scholar
  7. 7.
    M.K. Nazeeruddin, P. Pechy, T. Renouard, S.M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 123(8), 1613–1624 (2001)CrossRefGoogle Scholar
  8. 8.
    X.Y. Liu, S. Wang, H.W. Zheng, Y.Z. Gu, Insights into collaborative separation process of photogenerated charges and superior performance of solar cells. Appl. Phys. Lett. 109(4), 043906 (2016)CrossRefGoogle Scholar
  9. 9.
    H.M.A. Javed, W.X. Que, X.T. Yin, Y.L. Xing, J.Y. Shao, L.B. Kong, ZnO/TiO2 nanohexagon arrays heterojunction photoanode for enhancing power conversion efficiency in dye-sensitized solar cells. J. Alloys Compd. 685, 610–618 (2016)CrossRefGoogle Scholar
  10. 10.
    J.T. Jiu, F.M. Wang, M. Sakamoto, J. Takao, M. Adachi, Performance of dye-sensitized solar cell based on nanocrystals TiO2 film prepared with mixed template method. Sol. Energy Mater. Sol. Cells 87(S1), 77–86 (2005)CrossRefGoogle Scholar
  11. 11.
    J. Georgieva, E. Valova, S. Armyanov, D. Tatchev, S. Sotiropoulos, I. Avramova, N. Dimitrova, A. Hubin, O. Steenhaut, A simple preparation method and characterization of B and N co-doped TiO2 nanotube arrays with enhanced photoelectrochemical performance. Appl. Surf. Sci. 413, 284–291 (2017)CrossRefGoogle Scholar
  12. 12.
    B.H. Yan, M. Jansen, C. Felser, A large-energy-gap oxide topological insulator based on the superconductor BaBiO3. Nat. Phys. 9(11), 709–711 (2013)CrossRefGoogle Scholar
  13. 13.
    C. Franchini, A. Sanna, M. Marsman, G. Kresse, Structural, vibrational, and quasiparticle properties of the Peierls semiconductor BaBiO3: a hybrid functional and self-consistent GW plus vertex-corrections study. Phys. Rev. B 81(8), 085213 (2010)CrossRefGoogle Scholar
  14. 14.
    S. Chouhan, E. Athresh, R. Ranjan, S. Raghavan, S. Avasthi, BaBiO3: a potential absorber for all-oxide photovoltaics. Mater. Lett. 210, 218–222 (2018)CrossRefGoogle Scholar
  15. 15.
    C. Ferreyra, F. Marchini, P. Granell, F. Golmar, C. Albornoz, F.J. Williams, A.G. Leyva, D. Rubi, Growth of (100)-highly textured BaBiO3 thin films on silicon. Thin Solid Films 612, 369–372 (2016)CrossRefGoogle Scholar
  16. 16.
    A.C. Van Der Steen, Luminescence of Cs2NaYCl6-Bi3+(6s2). Phys. Stat. Sol. (b) 100, 603–611 (1980)CrossRefGoogle Scholar
  17. 17.
    R.V.K. Mangalam, P. Mandal, E. Suard, A. Sundaresan, Ferroelectricity in ordered perovskite BaBi0.5 3+(Bi0.2 5+Nb0.3 5+)O3 with Bi3+: 6s2 lone pair at the B-site. Chem. Mater. 19(17), 4114–4116 (2007)CrossRefGoogle Scholar
  18. 18.
    A.W. Sleight, Bismuthates: BaBiO3 and related superconducting phases. Physica C 514(15), 152–165 (2015)CrossRefGoogle Scholar
  19. 19.
    D.V. Efremov, J. Van den Brink, D.I. Khomskii, Bond-versus site-centred ordering and possible ferroelectricity in manganites. Nat. Mater. 3(12), 853–856 (2004)CrossRefGoogle Scholar
  20. 20.
    M.A. Butler, Photoelectrolysis and physical properties of the semiconducting electrode WO3. J. Appl. Phys. 48(5), 1914–1920 (1977)CrossRefGoogle Scholar
  21. 21.
    D.H. Bao, X. Yao, N. Wakiya, K. Shinozaki, N. Mizutani, Band-gap energies of sol-gel-derived SrTiO3 thin films. Appl. Phys. Lett. 79(23), 3767–3769 (2001)CrossRefGoogle Scholar
  22. 22.
    L. Kong, C. Wang, H. Zheng, X. Zhang, Y. Liu, Defect-induced yellow color in Nb-doped TiO2 and its impact on visible-light photocatalysis. J. Phys. Chem. C 119(29), 16623–16632 (2015)CrossRefGoogle Scholar
  23. 23.
    C.-H. Ho, Y.J. Chu, Bending photoluminescence and surface photovoltaic effect on multilayer InSe 2D microplate crystals. Adv. Opt. Mater. 3, 1750–1758 (2015)CrossRefGoogle Scholar
  24. 24.
    J.A. Hernándeza, E. Camarilloa, H. Lorob, H.S. Murrietaa, Bi4Ge3O12:Nd3+ and Bi12SiO20:Nd3+: a comparative spectroscopic study. J. Alloys Compd. 323–324, 714–717 (2001)CrossRefGoogle Scholar
  25. 25.
    V. Duzhko, F. Koch, F. Dittrich, Transient photovoltage and dielectric relaxation time in porous silicon. J. App. Phys. 91(11), 9432–9434 (2002)CrossRefGoogle Scholar
  26. 26.
    C. Fan, Q.L. Zhang, X.L. Zhu, X.J. Zhuang, A.L. Pan, Photoluminescence and surface photovoltage properties of ZnSe nanoribbons. Sci. Bull. 60(19), 1674–1679 (2015)CrossRefGoogle Scholar
  27. 27.
    H.W. Zheng, X.Y. Liu, C.L. Diao, Y.Z. Gu, W.F. Zhang, A separation mechanism of photogenerated charges and magnetic properties for BiFeO3 microspheres synthesized by a facile hydrothermal method. Phys. Chem. Chem. Phys. 14, 8376–8381 (2012)CrossRefGoogle Scholar
  28. 28.
    J.W. Tang, Z.G. Zou, J.H. Ye, Efficient photocatalysis on BaBiO3 driven by visible light. J. Phys. Chem. C 111(34), 12779–12785 (2007)CrossRefGoogle Scholar
  29. 29.
    T. Hatakeyama, S. Takeda, F. Ishikawa, A. Ohmura, A. Nakayama, Y. Yamada, A. Matsushita, J. Yea, Photocatalytic activities of Ba2RBiO6 (R = La, Ce, Nd, Sm, Eu, Gd, Dy) under visible light irradiation. J. Ceram. Soc. Jpn. 118(1374), 91–95 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronic Information EngineeringHenan Vocational College of AgricultureZhengzhouChina
  2. 2.School of Physics and Electronics, Henan Key Laboratory of Photovoltaic MaterialsHenan UniversityKaifengChina

Personalised recommendations