Advertisement

Synthesis, physico-chemical studies and Hirshfeld surface analysis of a first 0-D Chlorozincophosphate, (H2N(CH2)4NH(CH2)2NH3Cl)ZnCl2(HPO4)

  • Ali Rayes
  • Sofian Gatfaoui
  • Cherif Ben Nasr
  • Brahim Ayed
  • Mohamed Rzaigui
Article
  • 34 Downloads

Abstract

An original zero-dimensional chloro-substituted zincophosphate monomer, (H2N(CH2)4NH(CH2)2NH3Cl)Zn(HPO4)Cl2, was isolated by the reaction of zinc chloride (Zn2+, 2Cl) with the amine, 1-(2-aminoethyl)piperazine, H3PO4 and HCl under ambient conditions. This phase crystallizes in the triclinic space group P-1 (No. 2) with the lattice parameters a = 8.834(2), b = 8.539(3), c = 11.163(2) Å, α = 93.58(2)°, β = 108.62(2)°, γ = 62.96(2)°, V = 707.3(4) Å3, Z = 2, R = 0.027 and Rw = 0.037. The tri-protonited organic cations are linked to the isolated chloride ions Cl through N–H⋯Cl and C–H⋯Cl hydrogen bonds, forming corrugated cationic layers extending parallel to (a b) plane. The inorganic framework of the title compound consists of a network of ZnO3Cl and HPO4 tetrahedral units linked by their oxygen vertices, forming isolated 4-membered rings. These anionic monomers, (Zn2P2O8Cl4H2)4−, which are held by O–H⋯O hydrogen-bonding interactions, lie between the cationic layers to maximize the electrostatic interactions and are linked to (H2N(CH2)4NH(CH2)2NH3Cl)2+cations via N–H⋯O or N–H⋯Cl hydrogen bonds, forming a 3-D supra molecular structure. Hirshfeld surface analysis, Solid state NMR, Infrared spectroscopies and DTA/TGA analysis were also performed to characterize the title compound. Solid state31P and13C MAS NMR spectroscopy results were found to be in full agreement with the XRD results.

Supplementary material

10854_2018_9388_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 KB)

References

  1. 1.
    S.T. Wilson, B.M. Lok, C.A. Messina, T.R. Cannan, E.M. Flanigen, ,J. Am. Chem. Soc. 104, 1146–1147 (1982)CrossRefGoogle Scholar
  2. 2.
    A.K. Cheetham, G. Férey, T. Loiseau, Angew. Chem. Int. Ed. Engl. 38, 3268–3292 (1999)CrossRefGoogle Scholar
  3. 3.
    O. Terasaki, J.C. Barry, J.V. Sanders, J.M. Thomas, Nature 330, 58–60 (1987)CrossRefGoogle Scholar
  4. 4.
    O. Terasaki, J. Phys. Condensed Matter 2, 5209 (1990)CrossRefGoogle Scholar
  5. 5.
    G.A. Ozin, Nanochemistry, Adv. Mater. 4, 612–649 (1992)CrossRefGoogle Scholar
  6. 6.
    K.V. Khot, S.S. Mali, R.M. Mane, P.S. Patil, C.K. Hong, J.H. Kim, J. Heo, P.N. Bhosale, J. Mater. Sci. 26, 6897–6906 (2015)Google Scholar
  7. 7.
    K.V. Khot, S.S. Mali, V.B. Ghanwat, S.D. Kharade, R.M. Mane, C.K. Hong, P.N. Bhosale, New J. Chem. 40, 3277–3288 (2016)CrossRefGoogle Scholar
  8. 8.
    K.V. Khot, T.D. Dongale, S.S. Mali, C.K. Hong, R.K. Kamat, P.N. Bhosale1, J Mater. Sci. 52, 6709–6727 (2017)CrossRefGoogle Scholar
  9. 9.
    K.V. Khot, S.S. Mali, P.B. Patil, R.R. Kharade, R.M. Mane, C.K. Hong, P.N. Bhosale, Macromol. Symp. 362, 82–86 (2016)CrossRefGoogle Scholar
  10. 10.
    C.S. Bagade, V.B. Ghanwat, K.V. Khot, P.N. Bhosale, ‎Mater. Lett. 164, 52–55 (2016)CrossRefGoogle Scholar
  11. 11.
    M.M. Salunkhe, K.V. Khot, P.S. Patil, T.M. Bhavec, P.N. Bhosale, New J.Chem. 39, 3405–3416 (2015)CrossRefGoogle Scholar
  12. 12.
    A. Rayes, C. Ben Nasr, M. Rzaigui, Phosphorus Sulfur Silicon Relat. Elem. 180, 41–52 (2005)CrossRefGoogle Scholar
  13. 13.
    A. Rayes, C. Ben Nasr, M. Rzaigui, Mater. Res. Bull. 39, 571–580 (2004)CrossRefGoogle Scholar
  14. 14.
    A. Rayes, C. Ben Nasr, M. Rzaigui, Mater. Res. Bull. 36, 2229–2239 (2001)CrossRefGoogle Scholar
  15. 15.
    S. Neeraj, S. Natarajan, J. Mater. Chem. 10, 1171–1175 (2000)CrossRefGoogle Scholar
  16. 16.
    R. Kefi, A. Rayes, C. Ben Nasr, M. Rzaigui, Mater. Res. Bull. 42, 288–298 (2007)CrossRefGoogle Scholar
  17. 17.
    S. Natarajan, B. Ewald, Y. Prots, R. Kniep, Z. Anorg. Allg.Chem. 631, 1622–1626 (2005)CrossRefGoogle Scholar
  18. 18.
    G.M. Sheldrick, Acta Cryst. A 64, 112–122 (2008)CrossRefGoogle Scholar
  19. 19.
    F. Macrae, J.I. Bruno, A.J. Chisholm, R.P. Edgington, P. MeCabe, E. Pidcock, I. Rodriguez-Monge, R. Taylor, J. Van de Streek, A.P. Wood, J. Appl. Cryst. 41, 466–470 (2008)CrossRefGoogle Scholar
  20. 20.
    K. Brandenburg, Diamond Version 2.0 Impact. (GbR, Bonn, 1998)Google Scholar
  21. 21.
    W.T.A. Harrison, L. Hannooman, J. Solid State Chem. 131, 363 (1997)CrossRefGoogle Scholar
  22. 22.
    A.A. Ayi, A. Choudhury, S. Natarajan, S. Neeraj, C.N.R. Rao, Mater. Chem. Res. 11, 1181–1191 (2001)CrossRefGoogle Scholar
  23. 23.
    S. Neeraj, S. Natarajan, C.N.R. Rao, J. Solid State Chem. 150, 417–422 (2000)CrossRefGoogle Scholar
  24. 24.
    S. Natarajan, Y. Prots, B. Ewald, R. Niewa, R. Kniep, Z. Anorg. Allg. Chem. 632, 37–41 (2006)CrossRefGoogle Scholar
  25. 25.
    S. Natarajan. L.W. Van, W. Klein, M. Jansen, Inorg. Chem. 42, 6265–6273 (2003)CrossRefGoogle Scholar
  26. 26.
    I. Macdonald, W.T.A. Harrison, Inorg. Chem. 41, 6184–6186 (2002)CrossRefGoogle Scholar
  27. 27.
    D. Zhao-jun, Y. Yan, Z. Rong-fenj, L.H. Zheng-guo, Y. Ji-hong, Chem. Res. Chin.Univ. 27(4), 531–535 (2011)Google Scholar
  28. 28.
    F.O.M. Gasalin, A.M. Chippindale, C. R. Chimie 8, 521–529 (2005)CrossRefGoogle Scholar
  29. 29.
    S.K. Wolff, D.J. Grimwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka, M.A. Spackman, Crystal Explorer (Version 3.1) (University of Western Australia, Perth, 2012)Google Scholar
  30. 30.
    B. Jelsch, K. Ejsmont, L. Huder, IUCrJ. 1, 119–128 (2014)CrossRefGoogle Scholar
  31. 31.
    C.F. Matta, J. Hernández-Trujillo, T.-H. Tang, R.F.W. Bader, Chem. Eur. J. 9, 1940–1951 (2003)CrossRefGoogle Scholar
  32. 32.
    B. Mûller, E. Jahn, G. Ladwig, U. Haubenreisser, Chem. Phys. Lett. 109, 332 (1984)CrossRefGoogle Scholar
  33. 33.
    A.K. Cheetham, N.J. Clayden, C.M. Dobson, R.J.B. Jakemen, J. Chem. Soc. Chem. Commun. 3, 195–197 (1986)CrossRefGoogle Scholar
  34. 34.
    A.R. Grimmer, U. Haubenreisser, Chem. Phys. Lett. 99, 487–490 (1983)CrossRefGoogle Scholar
  35. 35.
    S. Prabhakar, K.J. Rao, C.N.R. Rao, Chem. Phys. Lett. 139, 96–102 (1987)CrossRefGoogle Scholar
  36. 36.
    P. Hartmann, J. Vogel, B. Schnabel, J. Magn. Reson. 111, 110 (1994)CrossRefGoogle Scholar
  37. 37.
    L. Mudracovskii, V.P. Shmochkova, N.S. Kentsarenko, V.M. Mastikhin, Phys. Chem. Solids 47, 335–339 (1986)CrossRefGoogle Scholar
  38. 38.
    G.L. Turner, K.A. Smith, R.J. Kirkpatrick, E.J. Oldfield, J. Magn. Reson. 70, 408 (1986)Google Scholar
  39. 39.
    A.C. Chapman, L.E. Thirlwell, Spectrochim. Acta 20, 937 (1964)CrossRefGoogle Scholar
  40. 40.
    S. Kamoun, M. Kamoun, A. Daoud, F. Romain, Spectrochim. Acta 47A, 1051 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ali Rayes
    • 1
  • Sofian Gatfaoui
    • 2
  • Cherif Ben Nasr
    • 2
  • Brahim Ayed
    • 3
  • Mohamed Rzaigui
    • 2
  1. 1.Unité de Recherche Catalyse et Matériaux pour l′Environnement et les ProcédésUniversité de GabèsGabèsTunisia
  2. 2.Laboratoire de Chimie des Matériaux, Faculté des Sciences de BizerteUniversité de CarthageZarzounaTunisia
  3. 3.Laboratoire de Matériaux et Cristallochimie, Département de ChimieFaculté des Sciences MonastirMonastirTunisia

Personalised recommendations