Advertisement

Fabrication of TiOx–Si photoanode and its energetic photoelectrochemical performance

  • Ruifen Ma
  • Shuai Wu
  • Hongtao Yu
  • Shuo Chen
  • Ankita Sinha
  • Xie Quan
Article
  • 20 Downloads

Abstract

Pristine Si is oxidized to insulative SiO2 when it comes in contact with air and water. Covering it with a protection layer inhibits passivation of Si and significantly improves its photoelectrochemical performance. In this study, TiOx with gradient change of oxygen stoichiometry ratio (TiOx) was designed as a protection layer and fabricated via a chemical vapour deposition process in Ar flow under 400 °C for 1 min. The anaerobic atmosphere and short heating duration synergistically produced the ratio of O and Ti lower than two in the prepared film. XPS analysis suggested the existance of TiO2 only at the surface of TiOx film and Ti3+ and Ti2+ appeared successively with the increase of distance to the surface. The first advantage of lower-valence-state Ti and oxygen deficiency was to inhibit the oxidation of Si and to reduce electric resistance of the interface and the protection layer. The second advantage was to create a defect energy level under the conduction band of TiO2 which provided the possibility for holes in the valence band of Si to be transferred to this defect level. This tunnel like transfer enhanced the photogenerated charge separation and redox ability of TiOx–Si which brought a 3.25 folds enhancements in photocurrent density compared to that of stoichiometric TiO2–Si at 0 V (SCE) under simulated sunlight. This study highly motivates further research on transparent and conductive protection layer of Si photoelectrode.

Notes

Acknowledgements

This work was supported by National Nature Science Foundation of China (NO. 21590813).

References

  1. 1.
    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 19, 114 (2014)Google Scholar
  2. 2.
    H. Yu, X. Li, X. Quan, S. Chen, Y. Zhang, Environ. Sci. Technol. 20, 43 (2009)Google Scholar
  3. 3.
    H. Yu, S. Chen, X. Quan, H. Zhao, Y. Zhang, Appl. Catal. B 1–2, 90 (2009)Google Scholar
  4. 4.
    Y.W. Chen, J.D. Prange, S. Duhnen, Y. Park, M. Gunji, C.E. Chidsey, McIntyre, PC Nat. Mater. 7, 10 (2011)Google Scholar
  5. 5.
    S. Hu, M.R. Shaner, J.A. Beardslee, M. Lichterman, B.S. Brunschwig, N.S. Lewis, Science 6187, 344 (2014)Google Scholar
  6. 6.
    M.R. Shaner, S. Hu, K. Sun, N.S. Lewis, Energy Environ. Sci. 1, 8 (2015)Google Scholar
  7. 7.
    W. Fang, M. Xing, J. Zhang, J. Photochem. Photobiol. C 21, 32 (2017)Google Scholar
  8. 8.
    A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C.L. Bianchi, R. Psaro, V. Dal Santo, J. Am. Chem. Soc. 18, 134 (2012)Google Scholar
  9. 9.
    Y. Zhang, Z. Xing, X. Liu, Z. Li, X. Wu, J. Jiang, M. Li, Q. Zhu, W. Zhou, ACS Appl. Mater. Interfaces 40, 8 (2016)Google Scholar
  10. 10.
    X. Zhou, N. Liu, P. Schmuki, ACS Catal. 5, 7 (2017)Google Scholar
  11. 11.
    A.Y. Stakheev, E.S. Shpiro, J. Apijok, J. Phys. Chem. 21, 97 (1993)Google Scholar
  12. 12.
    A. Brevet, P.M. Peterlé, L. Imhoff, M.C. Marco de Lucas, S. Bourgeois, J. Cryst. Growth 1–2, 275 (2005)Google Scholar
  13. 13.
    Y.P. Fang, A.W. Xu, W.F. Dong, Small 10, 1 (2005)Google Scholar
  14. 14.
    C. Di Valentin, G. Pacchioni, A. Selloni, J. Phys. Chem. C 48, 113 (2009)Google Scholar
  15. 15.
    K. Suriye, P. Praserthdam, B. Jongsomjit, Appl. Surf. Sci. 8, 253 (2007)Google Scholar
  16. 16.
    Q. Zhu, Y. Peng, L. Lin, C.-M. Fan, G.-Q. Gao, R.-X. Wang, A.-W. Xu, J. Mater. Chem. A 12, 2 (2014)Google Scholar
  17. 17.
    J. Wang, P. Zhang, X. Li, J. Zhu, H. Li, Appl. Catal. B 134135, 198–204 (2013)Google Scholar
  18. 18.
    Y. Zhu, M.W. Shah, C. Wang, Appl. Catal. B 526, 203 (2017)Google Scholar
  19. 19.
    Y. Cao, Z. Xing, Z. Li, X. Wu, M. Hu, X. Yan, Q. Zhu, S. Yang, W. Zhou, J. Hazard. Mater. 181, 343 (2018)Google Scholar
  20. 20.
    H. Li, W. Tu, Y. Zhou, Z. Zou, Adv. Sci. (Weinh) 11, 3 (2016)Google Scholar
  21. 21.
    X. Yao, L. Chen, M. Liu, D. Feng, C. Wang, F. Lu, W. Wang, X. Wang, Y. Cheng, H. Liu, H. Chen, W. Wang, Appl. Catal. B 70, 221 (2018)Google Scholar
  22. 22.
    S. Chen, Y. Hu, L. Ji, X. Jiang, X. Fu, Appl. Surf. Sci. 357, 292 (2014)Google Scholar
  23. 23.
    J. Halme, K. Miettunen, P. Lund, J. Phys. Chem. C 51, 112 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Industrial Ecology and Environment Engineering (Ministry of Education, China), School of Environmental Science and TechnologyDalian University of TechnologyDalianChina

Personalised recommendations