Advertisement

Optimization of TiO2/MWCNT composites for efficient dye sensitized solar cells

  • S. Kiran
  • S. K. Naveen Kumar
  • K. C. Yogananda
  • Dinesh Rangappa
Article
  • 61 Downloads

Abstract

This paper deals with the effects of introducing multiwall carbon nanotubes (MWCNTs) into photoanodes of dye sensitized solar cells (DSSCs). Mesoporous titanium dioxide (TiO2) nanoparticles were synthesized using sol–gel technique. TiO2/MWCNT composites were prepared by adding functionalized MWCNTs to TiO2 nanoparticles using two different surfactants (α-terpineol and Triton X-100). Nanoparticles and composites were characterized using Dynamic Light Scattering spectrophotometer, Raman spectrometer, X-ray diffractometer, field emission scanning electron microscope, Brunauer–Emmett–Teller surface area analyzer and UV–Vis spectrophotometer. FESEM depicted that particles were spherical in shape and their size decreased due to addition of MWCNTs. This was attributed to the decrease in the crystallite size which in turn confirmed by XRD. UV–Vis absorption spectra showed the better absorbance for the visible range of light, as the content of MWCNT is increased. From the Tauc plot optical band gap was calculated and noted that it declined gradually with the content of MWCNTs. BET surface area increased drastically which was attributed to the formation of more number of pores in the nanocomposites as visualized from FESEM. UV–Vis spectra of dye desorbed from the photoanode revealed that the dye adsorption increased as a function of MWCNT wt%. I–V studies were carried out under the illumination of 100 mW/cm2 simulated sunlight. Photoanodes prepared by both the methods showed better performance compared to pristine TiO2 photoanode, because of high conducting path and high surface area provided by MWCNTs. Photoanodes with 0.19 wt% MWCNTs in them were able to achieve maximum efficiency of 3.54 and 3.86% for method A and B respectively.

References

  1. 1.
    S. Karuppuchamy, Y. Andou, T. Endo, Appl. Nanosci. 3, 291–293 (2013)CrossRefGoogle Scholar
  2. 2.
    M. Gratzel, J. Photochem. Photobiol. C 4, 145–153 (2003)CrossRefGoogle Scholar
  3. 3.
    D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. Zakeeruddin, M. Gratzel, ACS Nano 2, 1113–1116 (2008)CrossRefGoogle Scholar
  4. 4.
    H. Setyawati, H. Darmokoesoemo, F. Rochman, A.J. Permana, Mater. Renew. Sustain. Energy (2017).  https://doi.org/10.1007/s40243-017-0101-9 Google Scholar
  5. 5.
    H.J. Snaith, Adv. Funct. Mater. 20, 13–19 (2010)CrossRefGoogle Scholar
  6. 6.
    S. Ito, T.N. Murakami, P. Comte, P. Liska, C. Graetzel, M.K. Nazeeruddin, M. Graetzel, Thin Solid Films 516, 4613–4619 (2008)CrossRefGoogle Scholar
  7. 7.
    D.Y. Rahman, M. Rokhmat, E. Yuliza, E. Sustini, M. Abdullah, Int. J. Energy Environ. Eng. 7, 289–296 (2016)CrossRefGoogle Scholar
  8. 8.
    K. Yu, J. Chen, Nanoscale Res. Lett. 4(1), 1–10 (2009).  https://doi.org/10.1007/s11671-008-9200-y CrossRefGoogle Scholar
  9. 9.
    M. Burghard, Surf. Sci. Rep. 58, 1–109 (2005)Google Scholar
  10. 10.
    M.A. Hamon, H. Hu, P. Bhowmik, S. Niyogi, B. Zhao, M.E. Itkis, R.C. Haddon, Chem. Phys. Lett. 347, 8–12 (2001)CrossRefGoogle Scholar
  11. 11.
    J. Khamwannah, S.Y. Noh, C. Frandsen, Y. Zhang, H. Kim, J. Renew. Sustain. Energy 4, 023116–023124 (2012)CrossRefGoogle Scholar
  12. 12.
    G.H. Guai, Y. Li, C.M. Ng, C.M. Li, M.B. Chan-Park, Chem. Phys. Chem. 13, 2566–2572 (2012)CrossRefGoogle Scholar
  13. 13.
    T. Sawatsuk, A. Chindaduang, C.S. Kung, S. Pratontep, G. Tumcharern, Diam. Relat. Mater. 18, 524–527 (2009)CrossRefGoogle Scholar
  14. 14.
    L. Meng, C. Fu, Q. Lu, Prog. Nat. Sci. 19, 801–810 (2009)CrossRefGoogle Scholar
  15. 15.
    S. Zhang, H. Niu, Y. Lan, C. Cheng, J. Xu, X. Wang, J. Phys. Chem. C 115, 22025–22034 (2011)CrossRefGoogle Scholar
  16. 16.
    C. Cheng, J. Wu, Y. Xiao, Y. Chen, H. Yu, Z. Tang, J. Lin, M. Huang, Front. Optoelectron. 5, 224–230 (2012)CrossRefGoogle Scholar
  17. 17.
    K.M. Lee, C.W. Hu, H.W. Chen, K.C. Ho, Sol. Energy Mater. Sol. Cells 92, 1628–1633 (2008)CrossRefGoogle Scholar
  18. 18.
    J. Yu, J. Fan, B. Cheng, J. Power Sources 196, 7891–7898 (2011)CrossRefGoogle Scholar
  19. 19.
    C.Y. Yen, Y.F. Lin, S.H. Liao, C.C. Weng, C.C. Huang, Y.H. Hsiao, C.C. Ma, M.C. Chang, H. Shao, M.C. Tsai, C.K. Hsieh, C.H. Tsai, F.B. Weng, Nanotechnology 19, 375305–375313 (2008)CrossRefGoogle Scholar
  20. 20.
    W. Zhong-Sheng, K. Hiroshi, K. Takeo, A. Hironori, Coord. Chem. Rev. 248, 1381–1389 (2004)CrossRefGoogle Scholar
  21. 21.
    W. Mathana, C. Siriluk, C. Surawut, J. Nanomater. (2015).  https://doi.org/10.1155/2015/689306 Google Scholar
  22. 22.
    M.M.H. Farooqi, R.K. Srivastava, Mater. Sci. Semicond. Process. 20, 61–67 (2014)CrossRefGoogle Scholar
  23. 23.
    G. Hu, X. Meng, X. Feng, Y. Ding, S. Zhang, M. Yang, J. Mater, Sci. 42, 7162–7170 (2007).  https://doi.org/10.1007/s10853-007-1609-7 CrossRefGoogle Scholar
  24. 24.
    U.J. Kim, C.A. Furtado, X.M. Liu, G.G. Chen, P.C. Eklund, J. Am. Chem. Soc. 127, 15437–15445 (2005)CrossRefGoogle Scholar
  25. 25.
    S. Osswald, E. Flahaut, Y. Gogotsi, Chem. Mater. 18, 1525–1533 (2006)CrossRefGoogle Scholar
  26. 26.
    G.J. Meyer, Inorg. Chem. 44, 6852–6864 (2005)CrossRefGoogle Scholar
  27. 27.
    S.W. Lee, W.M. Sigmund, Chem. Commun. 6, 780–781 (2003)CrossRefGoogle Scholar
  28. 28.
    Y. Yu, J.C. Yu, J.G. Yu, Y.C. Kwok, Y.K. Che, J.C. Zhao, L. Ding, W.K. Ge, P.K. Wong, Appl. Catal. A 289, 186–196 (2005)CrossRefGoogle Scholar
  29. 29.
    Y. Yu, L.L. Ma, W.Y. Huang, F. Du, J.C. Yu, J.G. Yu, J.B. Wang, P.K. Wong, Carbon 43, 670–673 (2005)CrossRefGoogle Scholar
  30. 30.
    A. Jitianu, T. Cacciaguerra, R. Benoit, S. Delpeux, F. Beguin, Carbon 42, 1147–1151 (2004)CrossRefGoogle Scholar
  31. 31.
    A.Y. Yen, Y.F. Lin, C.H. Hung, Y.H. Tseng, C.C. Ma, M.C. Chang, H. Shao, Nanotechnology 19, 045604–045614 (2008)CrossRefGoogle Scholar
  32. 32.
    X.H. Li, J.L. Niu, J. Zhang, H. Li, Z. Liu, J. Phys. Chem. B 107, 2453–2458 (2003)CrossRefGoogle Scholar
  33. 33.
    J.G. Yu, T.T. Ma, S.W. Liu, Phys. Chem. Chem. Phys. 13, 3491–3501 (2011)CrossRefGoogle Scholar
  34. 34.
    J.J. Fan, S.W. Liu, J.G. Yu, J. Mater. Chem. 22, 17027–17036 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ElectronicsUniversity of MysoreHassanIndia
  2. 2.Department of ElectronicsMangalore UniversityKonajeIndia
  3. 3.Department of Nanoscience and TechnologyVisvesvaraya Technological UniversityChikkaballapuraIndia

Personalised recommendations