Advertisement

Preparation and electrochemical properties of nanorods and nanosheets structural Li4Ti5O12 as anode for lithium ion batteries

  • Jingrui Kang
  • Guixia Dong
  • Zongfeng Li
  • Lei Li
Article
  • 39 Downloads

Abstract

In this study, nanorods and nanosheets structure of Li4Ti5O12 (LTO) with higher capacity and cycle performance are prepared by hydrothermal synthesis. We can obtain different nanostructural LTO by changing heating time in autoclave and molar ratio between lithium (Li) and titanium (Ti). Precursor was calcined at 600 °C for 6 h in air after heating to 180 °C with the holding time of 12 and 24 h in Teflon-lined PTFE autoclave vessel, nanorods and nanosheets structure of LTO were prepared successfully, respectively. Specially, when the molar ratio between Li and Ti was 4.2:5, the discharge capacities were 177.7 and 230.7 mAh g−1 at 20 mA g−1, respectively. When the holding time was 24 h as well as molar ratio between Li and Ti was 4.2:5, the band gap was least, and this pure LTO reversible capacities reached 90.36 and 73.12% after 200 and 3000 cycles at 100 mA g−1 and 1 A g−1, respectively.

Notes

Acknowledgements

This work was supported by National International Technology Cooperation Plan (Grant No. 2014DFR50570).

References

  1. 1.
    S. Sabrina, C. Fermin, L. Michel., Appl. Phys. A 122, 1–7 (2016)Google Scholar
  2. 2.
    M. Alain, C.M. Julien, Nanomaterials 5, 2279–2301 (2015)CrossRefGoogle Scholar
  3. 3.
    Y. Yang, B. Qiao, X. Yang et al., Adv. Funct. Mater. 24, 4349–4356 (2014)CrossRefGoogle Scholar
  4. 4.
    J.Y. Liao, V. Chabot, M. Gu et al., Nano Energy 9, 383–391 (2014)CrossRefGoogle Scholar
  5. 5.
    T.F. Yi, J. Shu, Y.R. Zhu et al., J. Power Sources 195, 285–288 (2010)CrossRefGoogle Scholar
  6. 6.
    Y.Q. Wang, L. Gu, Y.G. Guo et al., J. Am. Chem. Soc. 134, 7874–7880 (2012)CrossRefGoogle Scholar
  7. 7.
    A. Mahmoud, J.M. Amarilla, K. Lasri et al., Electrochim. Acta 93, 163–172 (2013)CrossRefGoogle Scholar
  8. 8.
    Y. Liu, R. Xiao, Y. Fang et al., Electrochim. Acta 211, 1041–1047 (2016)CrossRefGoogle Scholar
  9. 9.
    Q. Tian, Z. Zhang, L. Yang et al., J. Alloys Compd. 705, 638–644 (2017)CrossRefGoogle Scholar
  10. 10.
    S. Chen, Y. Xin, Y. Zhou et al., Energy Environ. Sci. 7, 1924–1930 (2014)CrossRefGoogle Scholar
  11. 11.
    X. Sun, P.V. Radovanovic, B. Cui, ChemInform 46, 38–63 (2015)Google Scholar
  12. 12.
    G. Wang, C. Lu, X. Zhang et al., Nano Energy 36, 46–57 (2017)CrossRefGoogle Scholar
  13. 13.
    G.Y. Liu, R.X. Zhang, K.Y. Bao et al., Ceram. Int. 42, 11468–11472 (2016)CrossRefGoogle Scholar
  14. 14.
    X. Bai, W. Li, A. Wei et al., Electrochim. Acta 222, (2016)Google Scholar
  15. 15.
    C. Zhang, D. Shao, J. Yu et al., J. Electroanal. Chem. 776, 188–192 (2016)CrossRefGoogle Scholar
  16. 16.
    X.B. Huang, H.H. Chen, S.B. Zhou et al., Appl. Mech. Mater. 633, 495–498 (2014)Google Scholar
  17. 17.
    D. Xu, P. Wang, R. Yang., Ceram. Int. 43, 7600–7606 (2017)CrossRefGoogle Scholar
  18. 18.
    L. Wang, Y. Zhang, M.E. Scofield et al., ChemSusChem 8, 3304–3313 (2015)CrossRefGoogle Scholar
  19. 19.
    H. Xu, Q. Tian, J. Huang et al., J. Phys. Chem. Solids 110, 49–57 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Moazeni, H. Hajipour, M. Askari et al., Mater. Res. Bull. 61, 70–75 (2015)CrossRefGoogle Scholar
  21. 21.
    C. Jiang, S. Liu, Q. Lian et al., Ceram. Int. 33, 559–566 (2017)Google Scholar
  22. 22.
    Q. Tian, P. Chen, Z. Zhang et al., J. Power Sources 350, 49–55 (2017)CrossRefGoogle Scholar
  23. 23.
    G. Liu, X. Liu, L. Wang et al., Electrochim. Acta 222, (2016)Google Scholar
  24. 24.
    L. Xiao, G. Chen, J. Sun et al., J. Mater. Chem. 46, 14618–14626 (2013)CrossRefGoogle Scholar
  25. 25.
    H.Y. Wu, M.H. Hon, C.Y. Kuan et al., RSC Adv. 5, 35224–35229 (2015)CrossRefGoogle Scholar
  26. 26.
    H. Ming, J. Ming, X. Li et al., Electrochim. Acta 116, 224–229 (2014)CrossRefGoogle Scholar
  27. 27.
    T.F. Yi, S.Y. Yang, Y.R. Zhu et al., Ceram. Int. 40, 9853–9858 (2014)CrossRefGoogle Scholar
  28. 28.
    J. Liu, X. Li, J. Yang et al., Electrochim. Acta 63, 100–104 (2012)CrossRefGoogle Scholar
  29. 29.
    L. Shen, E. Uchaker, X. Zhang et al., Adv. Mater. 24, 6502–6506 (2012)CrossRefGoogle Scholar
  30. 30.
    X. Wang, B. Liu, X. Hou et al., Nano Res. 7, 1073–1082 (2014)CrossRefGoogle Scholar
  31. 31.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, vol. 60, 2nd edn. (Wiley, 1980), pp. 669–676Google Scholar
  32. 32.
    Y. Sun, H. Dong, Y. Xu et al., Electrochim. Acta 246, (2017)Google Scholar
  33. 33.
    T. Trindade, P. O’Brien, X.M. Zhang., Chem. Mater. 9, 523–530 (1997)CrossRefGoogle Scholar
  34. 34.
    S. Hazra, S. Mandal, A. Ghosh et al., Phys. Rev. B 56, 8021–8027 (1997)CrossRefGoogle Scholar
  35. 35.
    H. Ge, H. Tian, H. Song et al., Mater. Res. Bull. 61, 459–462 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jingrui Kang
    • 1
  • Guixia Dong
    • 1
  • Zongfeng Li
    • 1
  • Lei Li
    • 1
  1. 1.Laboratory of Environment Functional Materials of Tangshan City, Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and EngineeringNorth China University of Science and TechnologyTangshanChina

Personalised recommendations