Characterization of CuInGeSe4 thin films and Al/n–Si/p–CuInGeSe4/Au heterojunction device

  • Talaat A. HameedEmail author
  • I. M. El Radaf
  • Hani E. Elsayed-Ali


CuInGeSe4 thin films of various thicknesses were prepared on a glass substrate by thermal evaporation followed by selenization at 700 K. Energy dispersive X-ray analysis shows that the CuInGeSe4 thin films are near stoichiometric. The X-ray diffraction patterns indicate that the as-deposited CuInGeSe4 thin films are amorphous, while the CuInGeSe4 thin films annealed at 700 K are polycrystalline with the chalcopyrite phase. The structure of the films was further investigated by transmission electron microscopy and diffraction, with the results verifying the X-ray diffraction data. High-resolution scanning electron microscopy images show well-defined grains that are nearly similar in size. The surface roughness increases with film thickness, as confirmed by atomic force microscopy. The optical transmission and reflection spectra of the CuInGeSe4 thin films were recorded over the wavelength range of 400–2500 nm. The variation of the optical parameters of the CuInGeSe4 thin films, such as the refractive index n and the optical band gap Eg, as a function of the film thickness was determined. The value of Eg decreases with increasing film thickness. For the studied films, n were estimated from the Swanoepl’s method and were found to increase with increasing film thickness as well as follow the two-term Cauchy dispersion relation. A heterojunction with the configuration Al/n–Si/p–CuInGeSe4/Au was fabricated. The built-in voltage and the carrier concentration of the heterojunction was determined from the capacitance–voltage measurements at 1 MHz and were found to be 0.61 V and 3.72 × 1017 cm−3, respectively. Under 1000 W/m2 solar simulator illumination, the heterojunction achieved a conversion efficiency of 2.83%.



The authors thankfully acknowledge Dr. Badawi Anis, Spectroscopy Department, National Research Centre and Dr. Ahmed S.G. Khalil, Center for Environmental and Smart Technology, Faculty of Science, Fayoum University, Egypt, for providing the atomic force microscope measurements. This work was funded by the National Research Centre, Cairo, Egypt.


  1. 1.
    A.C. Lokhande, A.A. Yadav, H. Lee, S.J. Patil, M. He, V.C. Lokhande, C.D. Lokhande, J.H. Kim Room temperature liquefied petroleum gas sensing using Cu2SnS3/CdS heterojunction. J. Alloys Compd. 709, 92–103 (2017)CrossRefGoogle Scholar
  2. 2.
    S.J. Patil, A.C. Lokhande, A.A. Yadav, C.D. Lokhande, Polyaniline/Cu2ZnSnS4 heterojunction based room temperature LPG sensor. J. Mater. Sci. 27, 7505–7508 (2016)Google Scholar
  3. 3.
    W. Lia, X. Yana, W.-L. Xua, J. Longa, AG. Aberlea, S. Venkataraja, Efficiency improvement of CIGS solar cells by a modified rear contact. Sol. Energy 157, 486–495 (2017)CrossRefGoogle Scholar
  4. 4.
    K.F. Tai, R. Kamada, T. Yagioka, T. Kato, H. Sugimoto, From 20.9 to 22.3% Cu (In,Ga)(S,Se)2 solar cell: reduced recombination rate at the heterojunction and the depletion region due to K-treatment. Jpn. J. Appl. Phys. 56(8S2), 08MC03 (2017)CrossRefGoogle Scholar
  5. 5.
    A. Talaat, E.M. Hameed, W. Cao, I.K. Abdelrazek, B.A. El Zawawi, E. Mansour, Effect of substrate temperature on properties of Cu(In, Ga, Al)Se2 films grown by magnetron sputtering. J. Mater. Sci. 27, 3209–3216 (2016)Google Scholar
  6. 6.
    K. Bouabid, A. Ihlal, A. Manar, A. Outzourhit, Effect of deposition and annealing parameters on the properties of electrodeposited CuIn1–xGaxSe2 thin films. Thin Solid Films 488, 62–67 (2005)CrossRefGoogle Scholar
  7. 7.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (version 37), Prog. Photovolt. Res. Appl. 19, 84 (2011)CrossRefGoogle Scholar
  8. 8.
    W. Chen, W. Cao, T.A. Hameed, S. Marsillac, E. Hani, H.E. Elsayed-Ali, Properties of Cu(In,Ga,Al)Se2 thin films fabricated by pulsed laser deposition. J. Mater. Sci. 26, 1743–1747 (2015)Google Scholar
  9. 9.
    A. Ihlal, K. Bouabid, D. Soubane, M. Nya, O. Ait-Taleb-Ali, Y. Amira, A. Outzourhit, G. Nouet, Comparative study of sputtered and electrodeposited CI(S,Se) and CIGSe thin films. Thin Solid Films 515, 5852–5856 (2007)CrossRefGoogle Scholar
  10. 10.
    A. Mansour, I.K.E.L. Zawawi, H.E. Elsayed-Ali, T.A. Hameed, Preparation and characterization of optical and electrical properties of copper selenide sulfide polycrystalline thin films., J. Alloy. Compd. 740, 1125–1132 (2017)Google Scholar
  11. 11.
    T. Hiroaki Matsushita, K. Ochiai, A. Mikajiri, Katsui, Thermal analysis of CuInGeSe4 quaternery compound for crystal growth solution method. Jpn. J. Appl. Phys. 39, 62 (2000)CrossRefGoogle Scholar
  12. 12.
    O.H. Hughes, J.C. Wool, Quaternary adamanite sekenids and yellirides of the form 1 III IV VI4. Solid State Commun. 35, 573–575 (1980)CrossRefGoogle Scholar
  13. 13.
    H. Matsushita, T. Maeda, A. Katsui, T. Takizawa, Thermal analysis and synthesis from the melts of Cu-based quaternary compounds Cu-III-IV-VI4 and Cu2-II-IV-VI4(II = Zn,Cd;III = Ga. J.Cryst.Growth 208, 416 (2000)CrossRefGoogle Scholar
  14. 14.
    T. Hiroaki Matsushita, K. Ochiai, A. Mikajiri, Preparation of CuInGeSe4 thin films by selenization method using the Cu–In–Ge evaporated layer precursors. J. Phys. Chem. Solids 66, 1937–1939 (2005)CrossRefGoogle Scholar
  15. 15.
    M.A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D.L. Young, B. Egaas, R. Noufi, Diode characteristics in state-of-the-art ZnO/CdS/Cu(In1 – xGax)Se2 solar cells, Prog. Photovolt: Res. Appl. 13, 209 (2005)CrossRefGoogle Scholar
  16. 16.
    R. Gupta, F. Yakuphanoglu, Photoconductive Schottky diode based on Al/p-Si/SnS2/Ag for optical sensor applications. Sol. Energy 86, 1539–1545 (2012)CrossRefGoogle Scholar
  17. 17.
    G. Sakr, Characterization of Al/p-Si/n-AgGaSe2/Au thin films heterojunction device. Mater. Chem. Phys. 138, 951–955 (2013)CrossRefGoogle Scholar
  18. 18.
    M. Venkatachalam, M.D. Kannan, S. Jayakumar, R. Balasundaraprabhu, N. Muthukumarasamy, Effect of annealing on the structural properties of electron beam deposited CIGS thin films. Thin Solid Films 516, 6848–6852 (2008)CrossRefGoogle Scholar
  19. 19.
    D.-Y. Lee, S.J. Park, J.H. Kim, Structural analysis of CIGS film prepared by chemical spray deposition. Curr. Appl. Phys. 11, S88eS92 (2011)CrossRefGoogle Scholar
  20. 20.
    M. Thirumoorthi, J.T.J. Prakash, Structural, morphological characteristics and optical properties of Y doped ZnO thin films by sol–gel spin coating method, Super lattice. Microstructures 85, 237–247 (2015)CrossRefGoogle Scholar
  21. 21.
    M.S. El-Bana, I.M. El Radaf, S.S. Fouad, G.B. Sakr, Structural and optoelectrical properties of nanostructured LiNiO2 thin films grown by spray pyrolysis technique. J. Alloy. Compd. 705, 333–339 (2017)CrossRefGoogle Scholar
  22. 22.
    A. Sawaby, M.S. Selim, S.Y. Marzouk, M.A. Mostafa, A. Hosny, Structure, optical and electrochromic properties of NiO thin films. Phys. B 405, 3412–3420 (2010)CrossRefGoogle Scholar
  23. 23.
    V. Alberts, K.T. Hillie, C.M. Demanet, Atomic force microscopy imaging of polycrystalline CuInSe2 thin films. J. Microsc. 197, 206–215 (2000)CrossRefGoogle Scholar
  24. 24.
    A.M. Salem, Y.A. El-Gendy, G.B. Sakr, W.Z. Soliman, Optical properties of thermochromic Cu2HgI4 thin films. J. Phys. D 41, 025311 (2008). (7 pp).CrossRefGoogle Scholar
  25. 25.
    A.M. Salema, T.M. Dahya, Y.A. El-Gendy, Thickness dependence of optical parameters for ZnTe thin films deposited by electron beam gun evaporation technique. Phys. B 403, 3027–3033 (2008)CrossRefGoogle Scholar
  26. 26.
    P. Peranantham, Y.L. Jeyachandran, C. Viswanathan, N.N. Praveena, P.C. Chitra, D. Mangalaraj, Sa..K. Narayandass, The effect of annealing on vacuum-evaporated copper selenide and indium telluride thin films. Mater. Charact. 58, 756–764 (2007)CrossRefGoogle Scholar
  27. 27.
    M. Marikkannan, V. Vishnukanthan, A. Vijayshankar, J. Mayandi, A novel synthesis of tin oxide thin films by the sol-gel process for optoelectronic applications. AIP Adv. 5, 027122 (2015)CrossRefGoogle Scholar
  28. 28.
    R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phps. E 16, 1214 (1983)CrossRefGoogle Scholar
  29. 29.
    J.C. Manifacier, J. Gasiot, J.P. Fillard, A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. J. Phys. E: Sci. Instrum. 9, 1002 (1976)CrossRefGoogle Scholar
  30. 30.
    T.S. Moss, Optical Properties of Semiconductors, Buttenworths London 1959Google Scholar
  31. 31.
    J.F. Eloy, Power Lasers National Sch. Phys. Wiley, Grenoble, 1984Google Scholar
  32. 32.
    Y.M. Hunge, A.A. Yadav, M.A. Mahadik, R.N. Bulakhe, J.J. Shim, V.L. Mathe, C.H. Bhosale, Degradation of organic dyes using spray deposited nanocrystalline stratified WO3/TiO2 photoelectrodes under sunlight illumination. Opt. Mater. 76, 260–270 (2018)CrossRefGoogle Scholar
  33. 33.
    F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)CrossRefGoogle Scholar
  34. 34.
    D. Gupta, S. Mukhopadhyay, K. Narayan, Fill factor in organic solar cells. Solar Energy Mater. 94, 1309–1313 (2010)CrossRefGoogle Scholar
  35. 35.
    F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu, Y. Wang, Recent development of the inverted configuration organic solar cells. Solar Energy Mater. 95, 1785–1799 (2011)CrossRefGoogle Scholar
  36. 36.
    A. Alkaya, R. Kaplan, H. Canbolat, S. Hegedus, A comparison of fill factor and recombination losses in amorphous silicon solar cells on ZnO and SnO2. Renew. Energy 34, 1595–1599 (2009)CrossRefGoogle Scholar
  37. 37.
    K.F. Abd El-Rahman, A.A.A. Darwish, E.A.A. El-Shazly, Electrical and photovoltaic properties of SnSe/Si heterojunction. Mater. Sci. Semicond. Process. 25, 123–129 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Talaat A. Hameed
    • 1
    Email author
  • I. M. El Radaf
    • 2
  • Hani E. Elsayed-Ali
    • 3
    • 4
  1. 1.Solid State Physics Department, Physics Research DivisionNational Research CentreGizaEgypt
  2. 2.Electron Microscope and Thin Films Department, Physics DivisionNational Research CentreGizaEgypt
  3. 3.Applied Research CenterOld Dominion UniversityNewport NewsUSA
  4. 4.Department of Electrical and Computer EngineeringOld Dominion UniversityNorfolkUSA

Personalised recommendations