Advertisement

Analysis of interface states in Au/ZnO/p-InP (MOS) structure

  • F. Z. Acar
  • A. Buyukbas-Ulusan
  • A. Tataroglu
Article
  • 102 Downloads

Abstract

Zinc oxide (ZnO) film was deposited on p-type InP substrate by means of radio frequency magnetron sputtering technique and thus the Au/ZnO/p-InP (MOS) structure was fabricated. The crystal structure and surface morphology of ZnO film deposited on InP were characterized by X-ray diffraction and atomic force microscopy, respectively. The analysis of interface states of the structure is studied using admittance (Y = G + iωC) measurements at room temperature. It is observed that the capacitance and conductance measurements change with frequency. This change is attributed to the presence of interface states. To determine the interface state density (Nss), the high-low frequency (CHF–CLF) capacitance, Hill–Coleman and conductance methods were used. The Nss values obtained from these methods are in agreement with each other. Furthermore, the effect of the series resistance (Rs) on admittance measurements was investigated. Thus, the obtained results suggest that the prepared structure can be used in various electronic applications.

References

  1. 1.
    E.H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982)Google Scholar
  2. 2.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn (Wiley, New York, 1981)Google Scholar
  3. 3.
    D.K. Schroder, Semiconductor Material and Device Characterization, 2nd edn (Wiley, New York, 1998)Google Scholar
  4. 4.
    A. Tataroglu, Ş Altındal, Characterization of interface states at Au/SnO2/n-Si (MOS) structures. Vacuum 82, 1203–1207 (2008)CrossRefGoogle Scholar
  5. 5.
    H. Xiao, S. Huang, Frequency and voltage dependency of interface states and series resistance in Al/SiO2/p-Si MOS structure. Mater. Sci. Semicond. Process. 13, 395–399 (2010)CrossRefGoogle Scholar
  6. 6.
    A. Kahraman, E. Yılmaz, S. Kaya, A. Aktag, Effects of post deposition annealing, interface states and series resistance on electrical characteristics of HfO2 MOS capacitors. J. Mater. Sci. Mater. Electron. 26, 8277–8284 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Hlali, N. Hizem, L. Militaru, A. Kalboussi, A. Souifi, Effect of interface traps for ultra-thin high-k gate dielectric based MIS devices on the capacitance-voltage characteristics. Microelectron. Reliab. 75, 154–161 (2017)CrossRefGoogle Scholar
  8. 8.
    A. Tataroglu, S. Altındal, Analysis of electrical characteristics of Au/SiO2/n-Si (MOS) capacitors using the high-low frequency capacitance and conductance methods. Microelectron. Eng. 85, 2256–2260 (2008)CrossRefGoogle Scholar
  9. 9.
    E.H. Nicollian, A. Goetzberger, The Si-SiO2 interface—electrical properties as determined by the metal-insulator-silicon conductance technique. Bell Syst. Technol. J. 46, 1055–1133 (1967)CrossRefGoogle Scholar
  10. 10.
    E.H. Nicollian, A. Goetzberger, MOS conductance technique for measuring surface state parameters. Appl. Phys. Let. 7, 216–219 (1965)CrossRefGoogle Scholar
  11. 11.
    R.J. Singh, R.S. Srivastava, Distribution of surface states based on Hill and Coleman conductance technique. Pramana 18, 137–143 (1982)CrossRefGoogle Scholar
  12. 12.
    Y. Andolsi, F. Chaabouni, M. Abaab, Sn doping effects on properties of ZnO thin films deposited by RF magnetron sputtering using a powder target. J. Mater. Sci. Mater. Electron. 28, 8347–8358 (2017)CrossRefGoogle Scholar
  13. 13.
    A. Nıkravan, Y. Badalı, S. Altındal, I. Uslu, I. Orak, On the frequency and voltage-dependent profiles of the surface states and series resistance of Au/ZnO/n-Si structures in a wide range of frequency and voltage. J. Electron. Mater. 46, 5728–5736 (2017)CrossRefGoogle Scholar
  14. 14.
    A. Yıldız, E. Ozturk, A. Atılgan, M. Sbeta, A. Atlı, T. Serin, An understanding of the band gap shrinkage in Sn-doped ZnO for dye-sensitized solar cells. J. Electron. Mater. 46, 6739–6744 (2017)CrossRefGoogle Scholar
  15. 15.
    I. Orak, A. Kocyigit, A. Turut, The surface morphology properties and respond illumination impact of ZnO/n-Si photodiode by prepared atomic layer deposition technique. J. Alloys Compd. 691, 873–879 (2017)CrossRefGoogle Scholar
  16. 16.
    I. Hussain, M.Y. Soomro, N. Bano, O. Nur, M. Willander, Interface trap characterization and electrical properties of Au-ZnO nanorod Schottky diodes by conductance and capacitance methods. J. Appl. Phys. 112, 064506 (2012)CrossRefGoogle Scholar
  17. 17.
    A.M. Rosa, E.P. da Silva, E. Amorim, M. Chaves, A.C. Catto, P.N. Lisboa-Filho, J.R.R. Bortoleto, Growth evolution of ZnO thin films deposited by RF magnetron sputtering. J. Phys. Conf. Ser. 370, 012020 (2012)CrossRefGoogle Scholar
  18. 18.
    J.G.Q. -Galván, H.T. -Huitle, L.A. H.-Hernández, J.S. A.-Cerón, FdeM. -Flores, A.H. -Hernández, E.C. -González, A.G. -Cervantes, O. Z.-Angel, J.J. Araiza, Study of the structure, optical properties, surface morphology and topology of ZnO thin films grown by sol–gel on silicon substrates. Mater. Res. Express 1, 036404 (2014)CrossRefGoogle Scholar
  19. 19.
    Z. Xu, J.Y. Hwang, B. Li, X. Huang, H. Wang, The characterization of various ZnO nanostructures using field-emission SEM. JOM 60, 29–32 (2008)CrossRefGoogle Scholar
  20. 20.
    W.L. Dang, Y.Q. Fu, J.K. Luo, A.J. Flewitt, W.I. Milne, Deposition and characterization of sputtered ZnO films. Superlattice Microstruct. 42, 89–93 (2007)CrossRefGoogle Scholar
  21. 21.
    S.S. Lin, J.L. Huang, Effect of thickness on the structural and optical properties of ZnO films by r.f. magnetron sputtering. Surf. Coat. Technol. 185, 222–227 (2004)CrossRefGoogle Scholar
  22. 22.
    S. Prucnal, S. Zhou, X. Ou, H. Reuther, M.O. Liedke, A. Mücklich, M. Helm, J. Zuk, M. Turek, K. Pyszniak, W. Skorupa, InP nanocrystals on silicon for optoelectronic applications. Nanotechnology 23, 485204 (2012)CrossRefGoogle Scholar
  23. 23.
    C. Tang, Y. Bando, Z. Liu, D. Golberg, Synthesis and structure of InP nanowires and nanotubes. Chem. Phys. Lett. 376, 676–682 (2003)CrossRefGoogle Scholar
  24. 24.
    E. Vasco, O. Böhme, E. Roman, Chemical characterization of ZnO films pulsed laser deposited on InP. J. Phys. Chem. C 111, 3505–3511 (2007)CrossRefGoogle Scholar
  25. 25.
    A. Tataroglu, A.G. Al-Sehemi, M. Özdemir, R. Özdemir, H. Usta, A.A. Al-Ghamdi, W.A. Farooq, F. Yakuphanoglu, Frequency and electric field controllable photodevice: FYTRONIX device. Phys. B 519, 53–58 (2017)CrossRefGoogle Scholar
  26. 26.
    A. Büyükbaş, A. Tataroğlu, M. Balbaşı, Analysis of electrical characteristics of metal-oxide-semiconductor capacitor by impedance spectroscopy. J. Nanoelectron. Optoelectron. 9, 515–519 (2014)CrossRefGoogle Scholar
  27. 27.
    Z.F. Zhu, H.-Q. Zhang, H.W. Liang, X.C. Peng, J.J. Zou, B. Tang, G.T. Du, Characterization of interface state density of Ni/p-GaN structures by capacitance/conductance-voltage-frequency measurements. Chin. Phys. Lett. 34, 097301 (2017)CrossRefGoogle Scholar
  28. 28.
    M.S.P. Reddy, P.T. Puneetha, Y.W. Lee, S.H. Jeong, C. Park, Effect of illumination and frequency dependent series resistance and interface state densities on the electrical properties of DNA-CTMA/p-GaN bio-hybrid Schottky photodiode. Poly Test. 59, 107–112 (2017)CrossRefGoogle Scholar
  29. 29.
    G. Ersöz, İ Yücedag, Y. Azizian-Kalandaragh, İ Orak, S. Altındal, Investigation of electrical characteristics in Al/CdS-PVA/p-Si (MPS) structures using impedance spectroscopy method. IEEE Trans. Electron. Dev. 63, 2948–2955 (2016)CrossRefGoogle Scholar
  30. 30.
    S. Kaya, R. Lok, A. Aktag, J. Seidel, E. Yılmaz, Frequency dependent electrical characteristics of BiFeO3 MOS capacitors. J. Alloys Compd. 583, 476–480 (2014)CrossRefGoogle Scholar
  31. 31.
    X. Zhang, H. Zhu, C. Cheng, T. Yu, D. Zhang, H. Zhong, X. Li, Y. Cheng, X. Xu, L. Cheng, J. Sun, B. Chen, Single frequency correction based on three-element model for thin dielectric MOS capacitor. Solid-State Electron. 129, 97–102 (2017)CrossRefGoogle Scholar
  32. 32.
    C. Bilkan, S. Altındal, Investigation of the C-V characteristics that provides linearity in a large reverse bias region and the effects of series resistance, surface states and interlayer in Au/n-Si/Ag diodes. J. Alloys Compd. 708, 464–469 (2017)CrossRefGoogle Scholar
  33. 33.
    S. Altındal, H. Kanbur, İ Yucedag, A. Tataroglu, On the energy distribution of interface states and their relaxation time and capture cross section profiles in Al/SiO2/p-Si (MIS) Schottky diodes. Microelectron. Eng. 85, 1495–1501 (2008)CrossRefGoogle Scholar
  34. 34.
    G. Dushaq, A. Nayfeh, M. Rasras, Passivation of Ge/high-κ interface using RF plasma nitridation. Semicond. Sci. Technol. 33, 015003 (2018)CrossRefGoogle Scholar
  35. 35.
    W.A. Hill, C.C. Coleman, A single-frequency approximation for interface-state density determination. Solid-State Electron. 23, 987–993 (1980)CrossRefGoogle Scholar
  36. 36.
    E.H. Nicollian, A. Goetzberger, A.D. Lopez, Expedient method of obtaining interface state properties from MIS conductance measurements. Solid State Electron. 12, 937–944 (1969)CrossRefGoogle Scholar
  37. 37.
    V. Kumar, N. Kaminski, A.S. Maan, J. Akhtar, Capacitance roll-off and frequency-dispersion capacitance–conductance phenomena in field plate and guard ring edge-terminated Ni/SiO2/4H-nSiC Schottky barrier diodes. Phys. Status Solidi. A 213, 193–202 (2016)CrossRefGoogle Scholar
  38. 38.
    S. Chatbouri, M. Troudi, A. Kalboussi, A. Souifi, Interface traps effect on the charge transport mechanisms in metal oxide semiconductor structures based on silicon nanocrystals. Microelectron. Reliab. 78, 227–232 (2017)CrossRefGoogle Scholar
  39. 39.
    M.M. Bülbül, Ş Altındal, F. Parlaktürk, A. Tataroglu, The density of interface states and their relaxation times in Au/Bi4Ti3O12/SiO2/n-Si (MFIS) structures. Surf. Interface Anal. 43, 1561–1565 (2011)CrossRefGoogle Scholar
  40. 40.
    A. BuyukbasUluşan, S. Altındal Yerişkin, A. Tataroğlu, M. Balbaşı, Y. Azizian Kalandaragh, Electrical and impedance properties of MPS structure based on (Cu2O-CuO-PVA) interfacial layer. J. Mater. Sci. Mater. Electron. 29, 8234–8243 (2018)CrossRefGoogle Scholar
  41. 41.
    N. Shiwakoti, A. Bobby, K. Asokan, B. Antony, Effect of Au8+ irradiation on Ni/n-GaP Schottky diode: its influence on interface state density and relaxation time. Phys. B 504, 133–138 (2017)CrossRefGoogle Scholar
  42. 42.
    M.E. Aydin, F. Yakuphanoglu, G. Ozturk, Modification of electrical properties of the Au/1,1′ dimethyl ferrocenecarboxylate/n-Si Schottky diode. Synth. Metals 160, 2186–2190 (2010)CrossRefGoogle Scholar
  43. 43.
    M.K. Bera, S. Chakraborty, S. Saha, D. Paramanik, S. Varma, S. Bhattacharya, C.K. Maiti, High frequency characterization and continuum modeling of ultrathin high-k (ZrO2) gate dielectrics on strained-Si. Thin Solid Films 504, 183–187 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceGazi UniversityAnkaraTurkey

Personalised recommendations