Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 18, pp 15795–15800 | Cite as

Theoretical study of the mechanical and electronic properties of [111]-Si nanowires with interstitial lithium

  • A. González-Macías
  • F. SalazarEmail author
  • A. Miranda
  • A. Trejo
  • I. J. Hernández-Hernández
  • L. A. Pérez
  • M. Cruz-Irisson


In this work, we present a density functional study of the Young’s modulus and electronic properties of hydrogen passivated silicon nanowires (H-SiNWs) grown along [111] crystallographic direction as function of concentration of interstitial lithium (Li) atoms. The study is performed using the supercell scheme, within the local density approximation implemented in the SIESTA code. The results show that the presence of Li closes the known semiconductor band gap of the H-SiNWs showing a like metallic behavior even when just one Li atom is placed in the nanowire structure. The participation of the Li atoms in the electronic density of states is almost constant in the valence and conduction bands. The formation energy analysis show how the system loses energetic stability when the concentration of Li grows, while the binding energy per Li atom suggests the formation of Si–Li bonds. On the other hand, the Young’s modulus of the silicon nanowires (SiNWs) is higher than that of the H-SiNW and lower than the bulk value. Moreover, the Young’s modulus is almost constant independently of the Li concentration. This result indicates that the H-SiNWs support the internal stress due to the addition of Li atoms and could offer a better useful life as electrodes in Li-ion batteries. The results of this work help to understand how the electronic and mechanical properties of H-SiNWs change during the charge/discharge process and the possibility to incorporate them as electrodes in Li batteries.



This work was supported by the multidisciplinary projects 2016-1770 and 2016-1771 of the SIP-IPN, project 20170885 of the SIP-IPN, and DGAPA-UNAM-PAPIIT IN107717. L.A.P. acknowledges partial support from “Cátedra Marcos Moshinsky”. I.J.H.-H. acknowledges the UNAM-DGAPA postdoctoral fellowship. Computations were performed at Miztli of DGTIC-UNAM.


  1. 1.
    X. Duan, Y. Li, N.K. Rajan, D.A. Routenberg, Y. Modis, M.A. Reed, Nat. Nanotechnol. 7, 401 (2012)CrossRefGoogle Scholar
  2. 2.
    P. Namdari, H. Daraee, A. Eatemadi, Nanoscale Res. Lett. 11, 406 (2016)CrossRefGoogle Scholar
  3. 3.
    F. Priolo, T. Gregorkiewicz, M. Galli, T.F. Krauss, Nat. Nanotechnol. 9, 19 (2014)CrossRefGoogle Scholar
  4. 4.
    A.D. Mallorquí, E. Alarcón-Lladó, I.C. Mundet, A. Kiani, B. Demaurex, S. De Wolf, A. Menzel, M. Zacharias, A. Fontcuberta i Morral, Nano Res. 8, 673 (2015)CrossRefGoogle Scholar
  5. 5.
    B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, R.P. Raffaelle, Energy Environ. Sci. 2, 638 (2009)CrossRefGoogle Scholar
  6. 6.
    J.R. Szczech, S. Jin, Energy Environ. Sci. 4, 56 (2011)CrossRefGoogle Scholar
  7. 7.
    C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R. Huggins, Y. Cui, Nat. Nanotechnol. 3, 31 (2008)CrossRefGoogle Scholar
  8. 8.
    T. Song, L. Hu, U. Paik, J. Phys. Chem. Lett. 13, 720 (2014)CrossRefGoogle Scholar
  9. 9.
    W. Wan, Q. Zhang, Y. Cui, E. Wang, J. Phys. Condens. Matter 22, 415501 (2010)CrossRefGoogle Scholar
  10. 10.
    Q. Zhang, W. Zhang, W. Wan, Y. Cui, E. Wang, Nano Lett. 10, 3243 (2010)CrossRefGoogle Scholar
  11. 11.
    F. Salazar, L.A. Pérez, M. Cruz-Irisson, Solid State Commun. 247, 6 (2016)CrossRefGoogle Scholar
  12. 12.
    M.T. McDowell, S. Xia, T. Zhu, Extrem. Mech. Lett. 9, 480 (2016)CrossRefGoogle Scholar
  13. 13.
    M.T. McDowell, S.W. Lee, W.D. Nix, Y. Cui, Adv. Mater. 25, 4966 (2013)CrossRefGoogle Scholar
  14. 14.
    M. Ashuri, Q. He, L.L. Shaw, Nanoscale 8, 74 (2016)CrossRefGoogle Scholar
  15. 15.
    M. Leisner, A. Cojocaru, E. Ossei-Wusu, J. Carstensen, H. Föll, Nanoscale Res. Lett. 5, 1502 (2010)CrossRefGoogle Scholar
  16. 16.
    H. Jung, M. Lee, B.C. Yeo, K.R. Lee, S.S. Han, J. Phys. Chem. C 119, 3447 (2015)CrossRefGoogle Scholar
  17. 17.
    H. Wu, Y. Cui, Nano Today 7, 414 (2012)CrossRefGoogle Scholar
  18. 18.
    V. Schmidt, J.V. Wittemann, U. Goesele, Chem. Rev. 110, 361 (2010)CrossRefGoogle Scholar
  19. 19.
    R. Rurali, N. Lorente, Phys. Rev. Lett. 94, 1 (2005)CrossRefGoogle Scholar
  20. 20.
    R. Rurali, N. Lorente, Nanotechnology 16, 1 (2005)CrossRefGoogle Scholar
  21. 21.
    N. Neophytou, S.G. Kim, G. Klimeck, H. Kosina, J. Appl. Phys. 107, 113701 (2010)CrossRefGoogle Scholar
  22. 22.
    Y.F. Zhang, L.S. Liao, W.H. Chan, S.T. Lee, T.K. Sham, Phys. Rev. B 61, 8298 (2000)CrossRefGoogle Scholar
  23. 23.
    D.D.D. Ma, C.S. Lee, F.C.K. Au, S.Y. Tong, S.T. Lee, Science 299, 1874 (2003)CrossRefGoogle Scholar
  24. 24.
    F. Salazar, L.A. Pérez, Comput. Mater. Sci. 63, 47 (2012)CrossRefGoogle Scholar
  25. 25.
    M. Amato, R. Rurali, Prog. Surf. Sci. 91, 1 (2016)CrossRefGoogle Scholar
  26. 26.
    H. Zhang, J. Tersoff, S. Xu, H. Chen, Q. Zhang, K. Zhang, Y. Yang, C.-S. Lee, K.-N. Tu, J. Li, Y. Lu, Sci. Adv. 2, e1501382 (2016)CrossRefGoogle Scholar
  27. 27.
    J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002)CrossRefGoogle Scholar
  28. 28.
    C. Kittel, Introduction to Solid State Physics, 7th edn (Wiley, New York, 1996)Google Scholar
  29. 29.
    T.H. Osborn, A.A. Farajian, J. Phys. Chem. C 116, 22916 (2012)CrossRefGoogle Scholar
  30. 30.
    K. Zhao, W.L. Wang, J. Gregoire, M. Pharr, Z. Suo, J.J. Vlassak, E. Kaxiras, Nano Lett. 11, 2962 (2011)CrossRefGoogle Scholar
  31. 31.
    W.W. Zhang, Q.a. Huang, H. Yu, L.B. Lu, Adv. Mater. Res. 60–61, 315 (2009)Google Scholar
  32. 32.
    J.J. Wortman, R.a. Evans, J. Appl. Phys. 36, 153 (1965)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Politécnico NacionalESIME-CulhuacánCiudad de MéxicoMéxico
  2. 2.Departamento de Física, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
  3. 3.Instituto de FísicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico

Personalised recommendations