Skip to main content
Log in

Localization and transfer of charge carriers in CuO nanopowder by impedance spectroscopy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Particular electro-physical characteristics of CuO nanopowder were investigated by impedance spectroscopy using a sensor based on interdigitated structure in the frequency range from 1 Hz to 100 MHz. The results of investigation were considered. Simulation of impedance spectra by equivalent electric circuits was carried out for numerical approximations of the frequency dependences of the dielectrical permittivity and conductivity. Electric charge accumulation of on the boundaries of nanoparticles and near the metal electrodes of the sensor was revealed. It was shown that a double electric layer is formed near the electrodes, which leads to the appearance of anomalously large values of dielectrical permittivity and an increase in the conductivity in the low-frequency region. The obtained results can be explained by proton conductivity in the nanopowder caused by moisture which is adsorbed on the surface of the nanoparticles. It was shown that after high-temperature annealing of CuO nanopowders, accumulation of electric charges was not observed. It was established that hopping or polaron conductivity occurs in the annealed CuO samples, which increases with increasing electric field frequency according to the power law with a fractional exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mohammad Eghbali-Arania, A. Sobhani-Nasabb, Mehdi Rahimi-Nasrabadic, Farhad Ahmadid, Saeid Pourmasoud, Sonochemistry 43, 120 (2018)

    Article  Google Scholar 

  2. A. Saeid Pourmasoud, M. Sobhani-Nasab, Behpour, Mehdi Rahimi-Nasrabadi, Farhad Ahmadi. Jof Mol Struct 1157, 607 (2018)

    Article  Google Scholar 

  3. Seyed Sajjad Hosseinpour-Mashkani, Ali Sobhani-Nasab, J. Mater. Sci. 28, 16459 (2017)

    Google Scholar 

  4. T.I. Arbuzova, S.V. Naumov, V.L. Arbuzov, K.V. Shalnov, A.E. Ermakov, A.A. Mysik, Phys. Solid State 45, 290 (2003)

    Google Scholar 

  5. A.E. Ermakov, M.A. Uymin, A.V. Korolyov, K.N. Mikhalev, A.N. Pirogov, A.E. Teplikh, N.N. Schegoleva, V.S. Gaviko, I.V. Byzov, V.V. Maikov, Phys. Solid State 57, 283 (2015)

    Google Scholar 

  6. J. Koshy, S. Samuel, A. Chandran, P. Vijayan, K.C. George, Inter. J. Chem. Phys. Sci. 4, 71 (2015)

    Google Scholar 

  7. A.V. Ushakov, I.V. Karpov, A.A. Lepeshev, J. Supercond. Novel Magn. 30, 3351 (2017)

    Article  Google Scholar 

  8. A.A. Lepeshev, A.V. Ushakov, I.V. Karpov, D.A. Balaev, A.A. Krasikov, A.A. Dubrovskiy, D.A. Velikanov, M.I. Petrov, J. Supercond. Novel Magn. 30, 931 (2017)

    Article  Google Scholar 

  9. A.A. Lepeshev, A.V. Ushakov, I.V. Karpov, J. Appl. Phys. 122, 104103 (2017)

    Article  Google Scholar 

  10. A.V. Ushakov, I.V. Karpov, A.A. Lepeshev, M.I. Petrov, J. Appl. Phys. 118, 023907 (2015)

    Article  Google Scholar 

  11. X. Rocquefelte, K. Schwarz, P. Blacha, S. Kumar, J. van den Brink, Nature Communications 4, 2511 (2013)

    Article  Google Scholar 

  12. A. Punnoose, H. Magnone, M.S. Seehra, Phys. Rev. B 64, 174420 (2001)

    Article  Google Scholar 

  13. Y. Bowen, S. Ramesh, C. Gill, S. Lawson, J. Mater. Sci. 33, 5103 (1998)

    Article  Google Scholar 

  14. A.A. Samokhvalov, T.I. Arbuzova, V.V. Osipov, N.A. Viglin, S.V. Naumov, N.I. Solin, B.A. Gizhevsky, I.B. Smolyak, V.A. Teplov, V.P. Pilyugin, Phys. Solid State 38, 3277 (1996)

    Google Scholar 

  15. A. Bose, S. Basu, S. Banerjee, D. Chakravorty, J. Appl. Phys. 98, 074307 (2005)

    Article  Google Scholar 

  16. D.-D. Wang, F.-Z. Zhou, J.-X. Cao, L.-B. Li, G.-L. Li, Curr. Appl. Phys. 17, 781 (2017)

    Article  Google Scholar 

  17. A.A. Samokhvalov, N.A. Viglin, B.A. Gizhevskii, N.N. Loshkareva, V.V. Osipov, N.I. Solin, Yu..P. Sukhorukov, J. Exp. Theor. Phys. 103, 951 (1993)

    Google Scholar 

  18. V.V. Osipov, I.V. Kochev, S.V. Naumov, J. Exp. Theor. Phys. 5, 1246 (2001)

    Google Scholar 

  19. A.V. Ushakov, I.V. Karpov, A.A. Lepeshev, L. Yu. Fedorov, A.A. Shaikhadinov, Int. J. Nanosci. 15, 1550027 (2016)

    Article  Google Scholar 

  20. A.V. Ushakov, I.V. Karpov, A.A. Lepeshev, M.I. Petrov, Vacuum. 133, 25 (2016)

    Article  Google Scholar 

  21. B. Purusottam Reddy, K. Sivajee Ganavesh, O.M. Hussain, Appl. Phys. A 122, 128 (2016)

    Article  Google Scholar 

  22. A. Moumen, B. Hartiti, P. Thevenin, Opt. Quant. Electron. 49, 70 (2017)

    Article  Google Scholar 

  23. T. Jiang, M. Bujoli-Doeuff, Y. Farre, Y. Pellegrin, E. Gautron, M. Boujtita, L. Cario, S. Jobic, F. Odobel, RSC Adv. 6, 1549 (2016)

    Article  Google Scholar 

  24. J.R. Macdonald, J. Non-Cryst. Solid 197, 83 (1996)

    Article  Google Scholar 

  25. F.L. Dickert, G.K. Zwissler, B. Bunsenges, Phys. Chem. 97, 184 (1993)

    Google Scholar 

  26. J. Koshy, S.M. Soosen, A. Chandran, K.C. George, J. Semicond. 36, 122003 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The work was performed with a support of the Grant of the Russian Science Foundation (Project No. 16-19-10054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lepeshev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lepeshev, A.A., Drokin, N.A., Ushakov, A.V. et al. Localization and transfer of charge carriers in CuO nanopowder by impedance spectroscopy. J Mater Sci: Mater Electron 29, 12118–12125 (2018). https://doi.org/10.1007/s10854-018-9319-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9319-2

Navigation