Advertisement

Doping effect of urea on growth, spectral, thermal, mechanical, electrical, nonlinear and optical studies of Sr(HCOO)2·2H2O crystal: enhanced third-order NLO properties with a high laser-induced damage threshold

  • S. Muthupoongodi
  • S. Theodore David Manickam
  • J. Angel Mary Greena
  • C. K. Mahadevan
  • X. Sahaya Shajan
Article
  • 36 Downloads

Abstract

Pure and urea doped (with 3 different concentrations, viz. 0.005, 0.05, and 0.1 M) strontium formate dihydrate (SFD, Sr(HCOO)2·2H2O) single crystals were grown from aqueous solutions by using slow solvent evaporation technique. In order to understand the effect of urea doping on the structural, chemical, thermal, morphological, optical properties of SFD crystals, the grown crystals were characterized by carrying out CHN analysis, powder X-ray diffraction, high resolution X-ray diffraction, Fourier transform infrared spectral, thermogravimetric, UV–Vis–NIR spectral, photoluminescence spectral, second harmonic generation efficiency, and Z-scan measurements. The results obtained indicate that the urea molecule have entered into the SFD crystal matrix and has improved the crystallinity. Also, the results indicate that urea doping significantly tunes the optical and thermal properties without significantly distorting the crystal structure of SFD crystal. The laser damage threshold (LDT) energy for the grown crystal has been measured by using a Q-switched Nd:YAG laser as a source in single-shot mode (1064 nm, 10 Hz, 420 mJ). The result of laser damage threshold (LDT) energy indicates that grown title crystal has excellent resistance to laser radiation than those of some known inorganic NLO materials. Its third-order nonlinear optical properties were investigated by Z-scan technique and proved that the grown crystal possesses two-photon absorptions (TPA) and the self-defocusing effect.

Notes

Acknowledgements

The authors (Dr.S. Muthupoongodi, Dr. S. Theodore David Manickam and Dr. X. Sahaya Shajan) gratefully acknowledge the financial support received from the Board of Research in Nuclear Science - Department of Atomic Energy (BRNS-DAE), Mumbai, India with Sanction No: 2013/34/1/BRNS/No.0486 to carry out this research work. One of the authors (S. Muthupoongodi) acknowledges the Dr. T. Geethakrishnan, Department of Physics, University College of Engineering, Villupuram for providing Z-scan measurement. The authors also acknowledge Dr. S. Kalainathan Centre for Crystal Growth, VIT University, Vellore, India for providing laser damage facility.

References

  1. 1.
    J.A.M. Greena, X.S. Shajan, S. Kumaresan, Int. J. Mater. Sci. 5, 209 (2010)Google Scholar
  2. 2.
    J.A.M. Greena, K. Karuppasamy, R. Antony, X.S. Shajan, S. Kumaresan, Der Chem. Sinica. 3(5), 1229–1238 (2012)Google Scholar
  3. 3.
    J.A.M. Greena, K. Karuppasamy, R. Antony, X.S. Shajan, S. Kumaresan, Chem. Sci. Trans. 2(1), 141–146 (2013)CrossRefGoogle Scholar
  4. 4.
    P.J.L. Caligne, Acta Cryst. B. 27, 2429–2431 (1971)CrossRefGoogle Scholar
  5. 5.
    J.A.M. Greena, K. Karuppasamy, R. Antony, X.S. Shajan, S. Kumaresan, IOSR: J. Appl. Phys. 1(4), 25–28 (2013)CrossRefGoogle Scholar
  6. 6.
    S. Muthupoongodi, S.T.D. Manickam, C.K. Mahadevan, J.A.M. Greena, S. Balakumar, X.S. Shajan, J. Cryst. Growth 428, 46–53 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Muthupoongodi, S.T.D. Manickam, C.K. Mahadevan, J.A.M. Greena, S. Balakumar, X.S. Shajan, Optik. 127, 4320–4323 (2016)CrossRefGoogle Scholar
  8. 8.
    M. Shi, Q. Cai, L. Yao, Y. Mao, Y. Ming, G. Ouyang, Cell Biol.Int 30, 221–226 (2006)CrossRefGoogle Scholar
  9. 9.
    M. Canadas, E.L. Torres, A.M. Aris, M.A. Mendrila, M.T. Sevilla, Polyhedron. 19, 2059–2064 (2000)CrossRefGoogle Scholar
  10. 10.
    B. Rosenberg, L. Van Camp, J.E. Trosko, V.H. Mansour, Nature. 222, 385–386 (1969)CrossRefGoogle Scholar
  11. 11.
    S.D. Cummings, Coord. Chem. Rev. 253, 449–478 (2009)CrossRefGoogle Scholar
  12. 12.
    B.K. Adams, E.M. Ferstl, M.C. Davis, M. Herold, S. Kurtkaya, R.F. Camalier, M.G. Hollingshead, G. Kaur, E.A. Sausville, F.R. Rickles, J.P. Snyder, D.C. Liotta, M. Shoji, Bioorg. Med. Chem. 12, 3871–3883 (2004)CrossRefGoogle Scholar
  13. 13.
    M.A. Jakupec, M. Galanski, B.K. Keppler, Rev. Physiol. Biochem. Pharmacol. 146, 1–53 (2003)CrossRefGoogle Scholar
  14. 14.
    F. Yang, G.P. Lim, A.N. Begum, O.J. Ubeda, M.R. Simmons, S.S. Ambegaokar, P.P. Chen, R. Kayed, C.G. Glabe, S.A. Frautschy, G.M. Cole, J. Biol. Chem. 280, 5892–5901 (2005)CrossRefGoogle Scholar
  15. 15.
    M. Przybyłek, D. Ziółkowska, M. Kobierski, K. Mroczyńska, P. Cysewski, J. Cryst. Growth.  https://doi.org/10.1016/j.jcrysgro.2015.10.015
  16. 16.
    R.N. Rai, S.R. Mudunuri, R.S.B. Reddi, V.S.A. Kumar Satuluri, S. Ganeshmoorthy, P.K. Gupta, J. Cryst. Growth 321, 72–77 (2011)CrossRefGoogle Scholar
  17. 17.
    P. Selvarajan, J.G.A. Raj, S. Perumal, J. Cryst. Growth 311, 3835–3840 (2009)CrossRefGoogle Scholar
  18. 18.
    K.L. Bye, P.W. Whipps, E.T. Keve, Ferroelectrics. 54, 51 (1984)Google Scholar
  19. 19.
    E.D. Dsilva, D.N. Rao, R. Philip, R.J. Butcher, Rajinikan, S.M. Dharmaprakash, Physica B. 406, 2206–2210 (2011)CrossRefGoogle Scholar
  20. 20.
    M. Rajalakshmi, R. Indirajith, M. Palanichamy, R. Gopalakrishnan, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 84, 43–50 (2011)CrossRefGoogle Scholar
  21. 21.
    M. Sheik-Bahae, A.A. Said, T. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990)CrossRefGoogle Scholar
  22. 22.
    W. Robert, Boyd, Nonlinear Optics (Academic Press, New York, 2007), , 3rd ednGoogle Scholar
  23. 23.
    S. Jeyaram, T. Geethakrishnan, Third-order nonlinear optical properties of acid Green 25 dye by Z-scan method. Opt. Laser Technol. 89, 179–185 (2017)CrossRefGoogle Scholar
  24. 24.
    Y.S. Zhou, E.B. Wang, J. Peng, Polyhedron 18, 1419–1423 (1999)CrossRefGoogle Scholar
  25. 25.
    P. Kalaiselvi, S. Alfred Cecil Raj, N. Vijayan, Optik 124, 6978–6982 (2013)CrossRefGoogle Scholar
  26. 26.
    M. Krishna Kumar, S. Sudhahar, P. Pandi, G. Bhagavannarayana, R. MohanKumar, Opt. Mater. 34, 988–995 (2014)CrossRefGoogle Scholar
  27. 27.
    M.K. Kumar, S. Sudhahar, A. Silambarasan, B.M. Sornamurthy, R.M. Kumar, Optik 125, 751–755 (2014)CrossRefGoogle Scholar
  28. 28.
    G. Pabitha, R. Dhanasekaran, Opt. Laser Technol. 50, 150–154 (2013)CrossRefGoogle Scholar
  29. 29.
    T.C. Sabari Girisun, S. Dhanuskodi, S. Vinitha, Mater. Chem. Phys. 129, 9–14 (2011)CrossRefGoogle Scholar
  30. 30.
    P. Vivek, R. Roop Kumar, P.J. Murugakoothan, Cryst. Growth 412, 40–48 (2015)CrossRefGoogle Scholar
  31. 31.
    M. Krishna Kumar, S. Sudhahar, P. Pandi, G. Bhagavannarayana, R. Mohan, Kumar, Opt. Mater. 34, 988–995 (2014)CrossRefGoogle Scholar
  32. 32.
    N. Vijayan, G. Bhagavannarayana, K.R. Ramesh, R. Gopalakrishnan, K.K. Maurya, P. Ramasamy, Cryst. Growth Des. 6, 1542 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Muthupoongodi
    • 1
  • S. Theodore David Manickam
    • 1
  • J. Angel Mary Greena
    • 2
  • C. K. Mahadevan
    • 1
  • X. Sahaya Shajan
    • 1
  1. 1.Centre for Scientific and Applied ResearchPSN College of Engineering and TechnologyTirunelveliIndia
  2. 2.Department of ChemistryArignar Anna CollegeAralvaimozhiIndia

Personalised recommendations