The effect of capping agents on the structural and magnetic properties of cobalt ferrite nanoparticles

  • T. PrabhakaranEmail author
  • R. V. MangalarajaEmail author
  • Juliano C. Denardin
  • K. Varaprasad


Microwave-assisted co-precipitation method was adopted to analyze the effect of polyethylene glycol (PEG) and urea concentrations on the properties of cobalt ferrite nanoparticles (NPs). The average crystallite size of single phase cubic spinel cobalt ferrite NPs was controlled within 10–14 nm with the effect of PEG, urea and the combination of them. The transmission electron micrographs revealed that the morphology of cobalt ferrites was not significantly influenced by the different concentration of capping agents but almost uniform morphology with nearly narrow size distribution was obtained. The interaction of PEG and urea molecules on the surface of nanoparticles was mediated through –OH hydroxyl group affected the crystal growth rate. The possible interaction mechanism was proposed with the help of IR vibrational spectra. All the samples exhibited ferromagnetism at room temperature and it was found that the capping agents showed an effect on the magnetic properties. The maximum saturation magnetization of 58 emu/g was achieved when the urea of 60 mg was used and the maximum coercivity of 311 Oe was attained when the mixture of PEG (40 mg) and urea (20 mg) were used. Ultrafine and hydrophilic cobalt ferrite NPs that showed appreciable magnetic properties obtained in the present experimental procedure would be of great interest in various biomedical applications.



This work was supported by FONDECYT Postdoctoral Research Project No.: 3160170, FONDECYT Project No.: 1140195, and CONICYT BASAL CEDENNA FB0807, Government of Chile.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    M. Sun, A. Zhu, Q. Zhang, Q. Liu, J. Magn. Magn. Mater. 369, 49 (2014)CrossRefGoogle Scholar
  2. 2.
    J. Yang, P. Zou, L. Yang, J. Cao, Y. Sun, D. Han, S. Yang, Z. Wang, G. Chen, B. Wang, X. Kong, Appl. Surf. Sci. 303, 425 (2014)CrossRefGoogle Scholar
  3. 3.
    P.L. Andrade, V.A.J. Silva, J.C. Maciel, M.M. Santillan, N.O. Moreno, L. De Los Santos Valladares, A. Bustamante, S.M.B. Pereira, M.P.C. Silva, J. Albino Aguiar, Hyperfine Interact. 224, 217 (2014)CrossRefGoogle Scholar
  4. 4.
    T. Prabhakaran, R.V. Mangalaraja, J.C. Denardin, J. Magn. Magn. Mater. 444, 297 (2017)CrossRefGoogle Scholar
  5. 5.
    S. Ammar, A. Helfen, N. Jouini, F. Fievet, I. Rosenman, F. Villain, P. Molinie, M. Danot, J. Mater. Chem. 11, 186 (2001)CrossRefGoogle Scholar
  6. 6.
    T. Prabhakaran, R.V. Mangalaraja, J.C. Denardin, J.A. Jiménez, Ceram. Int. 43, 5599 (2017)CrossRefGoogle Scholar
  7. 7.
    F.J. Pedrosa, J. Rial, K.M. Golasinski, M. Rodr, RSC Adv. 6, 87282 (2016)CrossRefGoogle Scholar
  8. 8.
    I. Bilecka, M. Niederberger, Nanoscale 2, 1358 (2010)CrossRefGoogle Scholar
  9. 9.
    S. Komarneni, M.C. D’Arrigo, C. Leonelli, G.C. Pellacani, H. Katsuki, J. Am. Ceram. Soc. 81, 3041 (2005)CrossRefGoogle Scholar
  10. 10.
    J.A. Gerbec, D. Magana, A. Washington, G.F. Strouse, J. Am. Chem. Soc. 127, 15791 (2005)CrossRefGoogle Scholar
  11. 11.
    T. Prabhakaran, R.V. Mangalaraja, J.C. Denardin, Mater. Res. Express 5, 026102 (2018)CrossRefGoogle Scholar
  12. 12.
    S. Li, G.W. Qin, T.W. Pei, Y. Ren, Y. Zhang, C. Esling, L. Zuo, J. Am. Ceram. Soc. 92, 631 (2009)CrossRefGoogle Scholar
  13. 13.
    A.S. Nikolić, N. Jović, J. Rogan, A. Kremenović, M. Ristić, A. Meden, B. Antić, Ceram. Int. 39, 6681 (2013)CrossRefGoogle Scholar
  14. 14.
    A. Abbasi, H. Khojasteh, M. Hamadanian, J. Mater. Sci. Mater. Electron. 27, 4972 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Jovanović, M. Spreitzer, M. Tramšek, Z. Trontelj, D. Suvorov, J. Phys. Chem. C 118, 13844 (2014)CrossRefGoogle Scholar
  16. 16.
    S. Esir, R. Topkaya, A. Baykal, Ö Akman, M.S. Toprak, J. Inorg. Organomet. Polym. Mater. 24, 424 (2014)CrossRefGoogle Scholar
  17. 17.
    R. Talebi, J. Mater. Sci. Mater. Electron. 28, 9749 (2017)CrossRefGoogle Scholar
  18. 18.
    K. Hedayati, S. Azarakhsh, D. Ghanbari, J. Nanostruct. 6, 127 (2016)Google Scholar
  19. 19.
    T. Yu, Z. Wu, W.-S. Kim, RSC Adv. 4, 37516 (2014)CrossRefGoogle Scholar
  20. 20.
    T. Prabhakaran, R.V. Mangalaraja, J.C. Denardin, J.A. Jiménez, J. Alloys Compd. 716, 171 (2017)CrossRefGoogle Scholar
  21. 21.
    M.R. Parra, F.Z. Haque, Optik 126, 1562 (2015)CrossRefGoogle Scholar
  22. 22.
    M. Sudha, S. Senthilkumar, R. Hariharan, A. Suganthi, M. Rajarajan, J. Sol-Gel. Sci. Technol. 65, 301 (2013)CrossRefGoogle Scholar
  23. 23.
    M. Mozaffari, S. Manouchehri, M.H. Yousefi, J. Amighian, J. Magn. Magn. Mater. 322, 383 (2010)CrossRefGoogle Scholar
  24. 24.
    N. Wu, L. Fu, M. Su, M. Aslam, K.C. Wong, V.P. Dravid, Nano Lett. 4, 383 (2004)CrossRefGoogle Scholar
  25. 25.
    M. Chithra, C.N. Anumol, B. Sahu, S.C. Sahoo, J. Magn. Magn. Mater. 424, 174 (2017)CrossRefGoogle Scholar
  26. 26.
    C. Zhang, M.R. Salick, T.M. Cordie, T. Ellingham, Y. Dan, L.-S. Turng, Mater. Sci. Eng. C 49, 463 (2015)CrossRefGoogle Scholar
  27. 27.
    R. Keuleers, H.O. Desseyn, B. Rousseau, C. Van Alsenoy, J. Phys. Chem. A 103, 4621 (1999)CrossRefGoogle Scholar
  28. 28.
    F. Gözüak, Y. Köseoǧlu, A. Baykal, H. Kavas, J. Magn. Magn. Mater. 321, 2170 (2009)CrossRefGoogle Scholar
  29. 29.
    S.M. Ansari, R.D. Bhor, K.R. Pai, S. Mazumder, D. Sen, Y.D. Kolekar, C.V. Ramana, ACS Biomater. Sci. Eng. 2, 2139 (2016)CrossRefGoogle Scholar
  30. 30.
    B.N. Hao, Y.X. Guo, Y.D. Liu, L.-M. Wang, H.J. Choi, J. Mater. Chem. C 4, 7875 (2016)CrossRefGoogle Scholar
  31. 31.
    G. Bertotti, in Hysteresis in Magnetism, ed. by G. Bertotti (Academic Press, San Diego, 1998), pp. 297–346CrossRefGoogle Scholar
  32. 32.
    E.P. Wohlfarth, J. Appl. Phys. 29, 595 (1958)CrossRefGoogle Scholar
  33. 33.
    T. Prabhakaran, J. Hemalatha, Ceram. Int. 42, (2016)Google Scholar
  34. 34.
    Y. Köseoğlu, A. Baykal, F. Gözüak, H. Kavas, Polyhedron 28, 2887 (2009)CrossRefGoogle Scholar
  35. 35.
    J. Peng, M. Hojamberdiev, Y. Xu, B. Cao, J. Wang, H. Wu, J. Magn. Magn. Mater. 323, 133 (2011)CrossRefGoogle Scholar
  36. 36.
    M. Houshiar, F. Zebhi, Z.J. Razi, A. Alidoust, Z. Askari, J. Magn. Magn. Mater. 371, 43 (2014)CrossRefGoogle Scholar
  37. 37.
    Y.M. Abbas, S.A. Mansour, M.H. Ibrahim, S.E. Ali, J. Magn. Magn. Mater. 323, 2748 (2011)CrossRefGoogle Scholar
  38. 38.
    L. Cui, P. Guo, G. Zhang, Q. Li, R. Wang, M. Zhou, L. Ran, X.S. Zhao, Colloids Surf. A 423, 170 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, Faculty of EngineeringUniversity of ConcepcionConcepcionChile
  2. 2.Department of PhysicsUniversity of Santiago and CEDENNASantiagoChile
  3. 3.Departamento de FísicaUniversidade Federal de Santa MariaSanta MariaBrazil
  4. 4.Center for Advanced Polymer Research (CIPA), CONICYT Regional, GORE BIO-BIO PRFC0002ConcepcionChile

Personalised recommendations