Advertisement

Influence of Co-doping on the optical and magnetic properties of CdS nanoparticles

  • Nikita H. Patel
  • M. P. Deshpande
  • S. H. Chaki
Article
  • 58 Downloads

Abstract

Undoped and Cobalt (Co) doped Cadmium sulfide (CdS) nanoparticles with Co in proportion of 10, 15 and 20 mol% are synthesized by chemical method at room temperature. UV–Vis–NIR absorption spectra shows blue shift in the absorption edge as compared to bulk material. The five characteristic absorption peaks at 475, 523 (513), 685, 729 and 741 nm are observable for Co doped CdS samples due to d–d transitions of Co2+ (d7) in tetrahedral symmetry and these peaks are assigned as O2−–Co2+ charge transfer process, 4A2 (F)–2E (G), 4A2 (F)–3/2 U′, 4A2 (F)–E″ and 4A2 (F)–5/2 U′ transitions respectively. The band gap values of undoped CdS nanoparticles is found to be 3.23 eV and the decrement in band gap from 3.23 to 3.18 eV due to Co concentration may be due to direct energy transfer between the semiconductor excited state and the 3d levels of the Co2+ ions. Interaction between polyvinylpyrrolidone (PVP) with CdS nanoparticles as well as conformation of the Cd–S and Co–S stretching band in Co doped CdS nanoparticles is studied by Fourier transform infrared spectroscopy. The photoluminescence (PL) spectra recorded at room temperature with 283 nm excitation wavelength show small shift in emission peak with Co doping which attribute to indirect recombination of the free electrons moving from the trap levels formed by the Co-atoms to the holes in the valence band. The luminescence intensity increases with Co2+ concentration because composite luminescence centre of Co2+ ions are formed, as a result more electrons are easily excited and enhance radiative recombination of luminescence process. The diamagnetic and paramagnetic behavior of undoped and Co doped CdS particles is confirmed by M–H curves and Gouy method. No branching is observed in both field cooled and zero field cooled curves of M–T loop, thereby removing the probability of superparamagnetism behavior of the material.

Notes

Acknowledgements

Authors are grateful to the Sophisticated Instrumentation Centre for Applied Research & Testing (SICART), Vallabh Vidyanagar, Gujarat, for carrying out UV–Vis–NIR and FTIR. We also acknowledge Dr. Vasant Sathe for and Dr. Alok Banerjee, UGC-DAE Consortium for Scientific Research, Indore for Raman and VSM experiments, Thanks are extended to Prof. N. D. Kulkarni, Department of Chemistry, M. S. University, Vadodara for magnetic susceptibility measurements and Dr. K. V. R. Murthy, Department of Applied Physics, M. S. University, Vadodara for PL study.

References

  1. 1.
    N.H. Patel, M.P. Deshpande, S.H. Chaki, Mater. Sci. Semicond. Process. 31, 272–280 (2015)CrossRefGoogle Scholar
  2. 2.
    J. Zutic, S.D. Fabian, Sarna, Rev. Mod. Phys. 76, 323–410 (2004)CrossRefGoogle Scholar
  3. 3.
    H. Ohno, H. Munekata, T. Penney, S. von Molnár, L.L. Chang, Phys. Rev. Lett. 68, 2664–2667 (1992)CrossRefGoogle Scholar
  4. 4.
    D.J. Monsma, R. Vlutters, J.C. Lodder, Science 281, 407–409 (1998)CrossRefGoogle Scholar
  5. 5.
    S. Hussain, P. Wan, N. Aslam, G. Qiao, G. Liu, M. Wang, J. Mater. Sci.: Mater. Electron. 29, 1759–1765 (2018)Google Scholar
  6. 6.
    X. Zheng, X. Yan, Y. Sun, Z. Bai, G. Zhang, Y. Shen, Q. Liang, Y. Zhang, Appl. Mater. Interfaces 7, 2480–2485 (2015)CrossRefGoogle Scholar
  7. 7.
    Y. Wang, I. Zhitomirsky, Mater. Lett. 65, 1759–1761 (2011)CrossRefGoogle Scholar
  8. 8.
    G.Z. Xing, Y.H. Lu, Y.F. Tian, J.B. Yi, C.C. Lim, Y.F. Li, G.P. Li, D.D. Wang, B. Yao, J. Ding, Y.P. Yuan, T. Wu, AIP Adv. 1, 022152 (2011)CrossRefGoogle Scholar
  9. 9.
    N.H. Hong, J. Sakai, N. Poirot, V. Brizé, Phys. Rev. B 73, 132404 (2006)CrossRefGoogle Scholar
  10. 10.
    A.P. Alivisatos, Science 271, 933–937 (1996)CrossRefGoogle Scholar
  11. 11.
    J. Geng, X. Jia, J. Zhu, Cryst. Eng. Commun. 13, 193–198 (2011)CrossRefGoogle Scholar
  12. 12.
    I. Willner, R. Baron, B. Willner, Biosens. Bioelectron. 22, 1841–1852 (2007)CrossRefGoogle Scholar
  13. 13.
    J.D.H. Kim, D.J. Lee, N.M. Kim, S.J. Lee, T.W. Kang, Y.D. Woo, D.J. Fu, J. Appl. Phys. 101, 094111 (2007)CrossRefGoogle Scholar
  14. 14.
    K.W. Liu, J.Y. Zhang, D.Z. Shen, X.J. Wu, B.H. Li, B.S. Li, Y.M. Lu, X.W. Fan, Appl. Phys. Lett. 90, 092507 (2007)CrossRefGoogle Scholar
  15. 15.
    C.W. Na, D.S. Han, D.S. Kim, Y.J. Kang, J.Y. Lee, J. Park, D.K. Oh, K.S. Kim, D. Kim, J. Phys. Chem. B 110, 6699–6704 (2006)CrossRefGoogle Scholar
  16. 16.
    M. Thambidurai, N. Muthukumarasamy, S. Agilan, N. Murugan, N. Sabari Arul, S. Vasantha, R. Balasundaraprabhu, Solid State Sci. 12, 1554–1559 (2010)CrossRefGoogle Scholar
  17. 17.
    M. Zielinski, C. Rigaux, A. Lemaitrie, A. Mycielskin, J. Deportes, Phys. Rev. B 53, 674–685 (1996)CrossRefGoogle Scholar
  18. 18.
    M.J. Seong, H. Alawadhi, I. Miotkowski, A.K. Ramdas, S. Miotkowska, Phys. Rev. B 63, 125208 (2001)CrossRefGoogle Scholar
  19. 19.
    S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, A.C. Panday, J. Alloys Compd. 513, 118–124 (2012)CrossRefGoogle Scholar
  20. 20.
    P. Reyes, S. Velumani, Mater. Sci. Eng. B 177, 1452–1459 (2012)CrossRefGoogle Scholar
  21. 21.
    S. Hussain, T. Liu, M. Kashif, L. Lin, S. Wu, W. Guo, W. Zeng, U. Hashim, Mater. Sci. Semicond. Process. 18, 52–58 (2014)CrossRefGoogle Scholar
  22. 22.
    C.N.R. Rao, A. Muller, A.K. Cheetham (eds.), The Chemistry of Nanomaterials: Synthesis, Properties and Applications, ed. by C.N.R. Rao, A. Muller (Wiley-VCH, Weinheim, 2004), ISBN 3-527-30686-2Google Scholar
  23. 23.
    D. Barreca, C. Massignan, Chem. Mater. 13, 588–593 (2001)CrossRefGoogle Scholar
  24. 24.
    F.J. Torres, U.R. Rodríguez–Mendoza, V. Lavín, E. Ruiz de Sola, J. Alarcón, J. Non-Cryst. Solids 353, 4093–4101 (2007)CrossRefGoogle Scholar
  25. 25.
    A.L. Oliva, O. Soliscanto, R. Castrorodriguez, P. Quintana, Thin Solid Films 391, 28–35 (2001)CrossRefGoogle Scholar
  26. 26.
    M. Elango, D. Nataraj, K. Prem Nazeer, M. Thamilselvan, Mater. Res. Bull. 47, 1533–1538 (2012)CrossRefGoogle Scholar
  27. 27.
    N.H. Patel. M.P. Deshpande, S.H. Chaki, H.R. Keharia, Mater. Focus 6, 398–406 (2017)CrossRefGoogle Scholar
  28. 28.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019–1022 (2000)CrossRefGoogle Scholar
  29. 29.
    M. Celalettin Baykul, N. Orhan, Thin Solid Films 518, 1925–1928 (2010)CrossRefGoogle Scholar
  30. 30.
    Y. Yu Peter, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, Berlin, 1996) ISBN: 978-3-642-00710-1Google Scholar
  31. 31.
    K.K. Nanda, S.N. Sarangi, S. Mohanty, S.N. Sahu, Thin Solid Films 322, 21–27 (1998)CrossRefGoogle Scholar
  32. 32.
    G. Perna, V. Capozzi, A. Minafra, M. Pallara, M. Ambrico, Eur. Phys. J. B 32, 339–344 (2003)CrossRefGoogle Scholar
  33. 33.
    T.S. Ahmadi, Z.L. Wang, T.C. Green, A. Henglein, Science 272, 1924 (1996)CrossRefGoogle Scholar
  34. 34.
    I.J. Ferrer, P. Salvador, J. Appl. Phys. 66, 2568–2577 (1989)CrossRefGoogle Scholar
  35. 35.
    R.H. Bube, J. Phys. Chem. Solids 1, 234–248 (1957)CrossRefGoogle Scholar
  36. 36.
    O. Kobayashi, J.D. Sankey, Dow, Phys. Rev. B 28, 946–956 (1983)CrossRefGoogle Scholar
  37. 37.
    N. Susa, H. Watanabe, M. Wada, Jpn. J. Appl. Phys. 15, 2365–2370 (1976)CrossRefGoogle Scholar
  38. 38.
    P. Mandal, S.S. Talwar, R.S. Srinivasa, S.S. Major, Appl. Phys. A 94, 577–584 (2009)CrossRefGoogle Scholar
  39. 39.
    J.J. Ramsden, M. Gratzel, J. Chem. Soc. Faraday Trans. 80, 919–933 (1984)CrossRefGoogle Scholar
  40. 40.
    J. Chrysochoos, J. Phys. Chem. 96, 2868–2873 (1992)CrossRefGoogle Scholar
  41. 41.
    A.A. Vuylsteke, Y.T. Sihvonen, Phys. Rev. 113, 40–42 (1959)CrossRefGoogle Scholar
  42. 42.
    S. Achour, G.H. Talat, Thin Solid Films 144, 1–6 (1986)CrossRefGoogle Scholar
  43. 43.
    W.E. Spear, G.W. Bradberry, Phys. Status Solidi B 8, 649–662 (1965)CrossRefGoogle Scholar
  44. 44.
    N.H. Patel, M.P. Deshpande, S.V. Bhatt, K.R. Patel, S.H. Chaki, Adv. Mater. Lett. 5, 671–677 (2014)CrossRefGoogle Scholar
  45. 45.
    B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials (Wiley-IEEE Press, Hoboken, NJ, 2009) ISBN 978-0-471-47741-9Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nikita H. Patel
    • 1
  • M. P. Deshpande
    • 2
  • S. H. Chaki
    • 2
  1. 1.Department of Applied SciencesITM Vocational UniversityVadodaraIndia
  2. 2.Department of PhysicsSardar Patel UniversityVallabh VidyanagarIndia

Personalised recommendations