Skip to main content
Log in

Synthesis and characterization of cobalt antimonate nanostructures and their study as potential CO and CO2 sensor at low temperatures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cobalt antimonate (CoSb2O6) nanostructures were prepared using the microwave-assisted colloidal method, employing cobalt nitrate, antimony chloride, ethylenediamine and ethyl alcohol. The solvent was evaporated through microwave radiation at 140 W. The precursor material was dried at 200 °C and then calcined at 300, 400, 500, and 600 °C in static air. The crystalline phase of the material was found at 600 °C by means of X-ray diffraction. Morphology was analyzed through scanning electron microscopy, finding octahedral particles with an edge length between 3 and 50 µm, and other particles of nanometric size. The size of these irregularly shaped nanoparticles was estimated of ~ 17.6 nm by means of transmission electron microscopy. UV–vis analyses of semiconducting powders revealed a forbidden band of ~ 1.82 eV. For the gas detection experiments, thick films and pellets were made of CoSb2O6 powders (600 °C). The tests were carried out in air, CO, and CO2 atmospheres at different gas concentrations and operating temperatures. The cobalt antimonate nanoparticles showed high sensitivity at 300 °C and 300 ppm of CO, and a good dynamic response at 100 ppm of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Guillén-Bonilla, M. Flores-Martínez, V.-M. Rodríguez-Betancourtt, A. Guillen-Bonilla, J. Reyes-Gómez, L. Gildo-Ortiz, M. de la Luz Olvera Amador, J. Santoyo-Salazar, Sensors 16, 1 (2016)

    Article  Google Scholar 

  2. N. Yamazoe, Sens. Actuators B 108, 2 (2005)

    Article  Google Scholar 

  3. M. Gardon, J.M. Guilemany, J. Mater. Sci. Mater. Electron. 24, 1410 (2013)

    Article  Google Scholar 

  4. V.E. Bochenkov, G.B. Sergeev, Adv. Colloid Interface Sci. 116, 245 (2005)

    Article  Google Scholar 

  5. A. Guillén-Bonilla, V.-M. Rodríguez-Betancourtt, M. Flores-Martínez, O. Blanco-Alonso, J. Reyes-Gómez, L. Gildo-Ortiz, H. Guillén-Bonilla, Sensors 14, 15802 (2014)

    Article  Google Scholar 

  6. G. Neri, Chemosensors 3, 1 (2015)

    Article  Google Scholar 

  7. S. Yu-Feng, L. Shao-Bo, M. Fan-Li, L. Jin-Yun, J. Zhen, K. Ling-Tao, L. Jin-Huai, Sensors 12, 2610 (2012)

    Article  Google Scholar 

  8. H. Guillen-Bonilla, V.-M. Rodríguez-Betancourtt, J.-T. Guillén-Bonilla, J. Reyes-Gómez, L. Gildo-Ortiz, M. Flores-Martínez, M. de la luz Olvera-Amador, J. Santoyo-Salazar, J. Nanomater. 2015, 1 (2015)

    Google Scholar 

  9. A. Singh, A. Singh, S. Singh, P. Tandon, Chem. Phys. Lett. 646, 41 (2016)

    Article  Google Scholar 

  10. L.L. Fields, J.P. Zheng, Y. Cheng, P. Xiong, Appl. Phys. Lett. 88, 263102 (2006)

    Article  Google Scholar 

  11. P.T. Moseley, Sens. Actuators B 6, 149 (1992)

    Article  Google Scholar 

  12. D. Larcher, A.S. Prakash, L. Laffont, M. Womes, J.C. Jumas, J. Olivier-Fourcade, M.S. Hedge, J.-M. Tarascon, J. Electrochem. Soc. 153, A1778 (2006)

    Article  Google Scholar 

  13. D. Li, X. Yan, C. Lin, S. Huang, Z.R. Tian, B. He, Q. Yang, B. Yu, X. He, J. Li, J. Wang, H. Zhan, S. Li, J. Kang, Nanoscale Res. Lett. 12, 1 (2017)

    Article  Google Scholar 

  14. J.L. Castro-Mayorga, M.J. Fabra, L. Cabedo, J.M. Lagaron, Nanomaterials-Basel 7, 1 (2017)

    Google Scholar 

  15. L. Sang-Jin, M.K. Waltraud, J. Am. Ceram. Soc. 81, 2605 (1998)

    Google Scholar 

  16. A. Mirzaei, G. Neri, Sens. Actuators B 237, 749 (2016)

    Article  Google Scholar 

  17. D.R. Miller, S.A. Akbar, P.A. Morris, Sens. Actuators B 204, 250 (2014)

    Article  Google Scholar 

  18. A. Afzal, N. Cioffi, L. Sabbatini, L. Torsi, Sens. Actuators B 171, 25 (2012)

    Article  Google Scholar 

  19. K. Hyo-Joong, L. Jong-Heun, Sens. Actuators B 192, 607 (2014)

    Article  Google Scholar 

  20. G. Carbajal-Franco, A. Tiburcio-Silver, J.M. Domínguez, A. Sánchez-Juárez, Thin Solid Films 373, 141 (2000)

    Article  Google Scholar 

  21. J.K. Srivastava, P. Pandey, V.N. Mishra, R. Dwivedi, Solid State Sci. 11, 1602 (2009)

    Article  Google Scholar 

  22. M. Kerlau, P. Reichel, N. Barsan, U. Weimar, S. Delsarte-Guéguen, O. Merdrignac-Conanec, Sens. Actuators B 122, 14 (2007)

    Article  Google Scholar 

  23. A.R. Gardeshzadeh, B. Raissi, E. Marzbanrad, H. Mohebbi, J. Mater. Sci. Mater. Electron. 20, 127 (2009)

    Article  Google Scholar 

  24. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Sensors 10, 2088 (2010)

    Article  Google Scholar 

  25. T. Addabbo, F. Bertocci, A. Fort, M. Gregorkiewitz, M. Mugnaini, R. Spinicci, V. Vignoli, Sens. Actuators B 221, 1137 (2015)

    Article  Google Scholar 

  26. L. Gildo-Ortiz, J. Reyes-Gómez, J.M. Flores-Álvarez, H. Guillén-Bonilla, M. de la Luz Olvera, V.M.R. Betancourtt, Y. Verde-Gómez, A. Guillén-Cervantes, J. Santoyo-Salazar, Ceram. Int. 42, 18821 (2016)

    Article  Google Scholar 

  27. Y. Yuan, B. Wang, C. Wang, X. Li, J. Huang, H. Zhang, F. Xia, J. Xiao, Sens. Actuators B 239, 462 (2017)

    Article  Google Scholar 

  28. C. Dong, X. Liu, X. Xiao, S. Du, Y. Wang, Sens. Actuators B 239, 1231 (2017)

    Article  Google Scholar 

  29. P.T. Moseley, D.E. Williams, J.O.W. Norris, Sens. Actuators 14, 79 (1988)

    Article  Google Scholar 

  30. V. Samuel, A.B. Gaikwad, A.D. Jadhav, N. Natarajan, V. Ravi, Mater. Lett. 61, 2354 (2007)

    Article  Google Scholar 

  31. C.R. Michel, A.H. Martínez, S. Jiménez, Sens. Actuators B 132, 45 (2008)

    Article  Google Scholar 

  32. A. Jamal, M.M. Rahman, S.B. Khan, M. Faisal, K. Akhtar, M.A. Rub, A.M. Asiri, A.O. Al-Youbi, Appl. Surf. Sci. 261, 52 (2012)

    Article  Google Scholar 

  33. V.V. Gorbunov, A.A. Shidlovskii, L.F. Shmagin, Shock Waves 19, 172 (1983)

    Article  Google Scholar 

  34. Z.-X. Deng, C. Wang, X.-M. Sun, Y.-D. Li, Inorg. Chem. 41, 869 (2002)

    Article  Google Scholar 

  35. X. Wang, Y. Li, Inorg. Chem. 45, 7522 (2006)

    Article  Google Scholar 

  36. H. Guillén-Bonilla, L. Gildo-Ortiz, L. de la Olvera-Amador, J. Santoyo-Salazar, V.M. Rodríguez-Betancourtt, A. Guillen-Bonilla, J. Reyes-Gómez, J. Nanomater. 2015, 1 (2015)

    Google Scholar 

  37. E. Matijevic, Langmuir 10, 8 (1994)

    Article  Google Scholar 

  38. V. Polshettiwar, B. Baruwati, R.S. Varma, ACS Nano 3, 728 (2009)

    Article  Google Scholar 

  39. C. Balamurugan, A.R. Maheswari, D.W. Lee, Sens. Actuators B 205, 289 (2014)

    Article  Google Scholar 

  40. V.S. Bystrov, C. Piccirillo, D.M. Tobaldi, P.M.L. Castro, J. Coutinho, S. Kopyl, R.C. Pullar, Appl. Catal. B 196, 100 (2016)

    Article  Google Scholar 

  41. J. Kita, A. Engelbrecht, F. Schubert, A. Groß, F. Rettig, R. Moos, Sens. Actuators B 213, 541 (2015)

    Article  Google Scholar 

  42. J.F. McAleer, P.T. Moseley, J.O.W. Norris, D.E. Williams, J. Chem. Soc. Faraday Trans. I 83, 1323 (1987)

    Article  Google Scholar 

  43. A. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, J.T. Guillén-Bonilla, A. Sánchez-Martínez, L. Gildo-Ortiz, J. Santoyo-Salazar, J.P. Morán-Lázaro, H. Guillén-Bonilla, O. Blanco-Alonso, Ceram. Int. 43, 13635 (2017)

    Article  Google Scholar 

  44. H. Tsuji, A. Okamura-Yoshida, T. Shishido, H. Hattori, Langmuir 19, 8793 (2003)

    Article  Google Scholar 

  45. K. Fan, H. Qin, L. Wang, L. Ju, J. Hu, Sens. Actuators B 177, 265 (2013)

    Article  Google Scholar 

  46. C.R. Michel, A.H. Martínez-Preciado, J.P. Morán-Lázaro, Sens. Actuators B 140, 149 (2009)

    Article  Google Scholar 

  47. C.R. Michel, H. Guillén-Bonilla, A.H. Martínez-Preciado, J.P. Morán-Lázaro, Sens. Actuators B 143, 278 (2009)

    Article  Google Scholar 

  48. V.-M. Rodríguez-Betancourtt, H.G. Bonilla, M.F. Martínez, A.G. Bonilla, J.P.M. Lazaro, J.T.G. Bonilla, M.A. González, M.A. de la Luz Olvera-Amador, J. Nanomater. 2017, 1 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Mexico’s National Council of Science and Technology (CONACyT) for their financial support (Project No. 279937). Likewise, the PRODEP is thanked for its support through project F-PROMEP-39/Rev-04 SEP-23-005 (DSA/103.5/16/10313: No. 236214 and 237461), project F-PROMEP-74/Rev-05 (511-6/17-8091: No. 238639), and project No. 511-6/17-7354 (Fortalecimiento de Cuerpos Académicos Convocatoria 2017). Also worth noting is the technical assistance received from Sergio Oliva-León (CUCEIU. de G.). Authors express their gratitude to Carlos Michel-Uribe for giving us the possibility to use his facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor Guillén-Bonilla.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillén-Bonilla, A., Blanco-Alonso, O., Guillén-Bonilla, J.T. et al. Synthesis and characterization of cobalt antimonate nanostructures and their study as potential CO and CO2 sensor at low temperatures. J Mater Sci: Mater Electron 29, 15632–15642 (2018). https://doi.org/10.1007/s10854-018-9157-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9157-2

Navigation