Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 18, pp 15613–15620 | Cite as

Effect of Li+ co-doping on structural and luminescence properties of Mn4+ activated magnesium titanate films

  • L. Borkovska
  • L. Khomenkova
  • I. Markevich
  • M. Osipyonok
  • T. Stara
  • O. Gudymenko
  • V. Kladko
  • M. Baran
  • S. Lavoryk
  • X. Portier
  • T. Kryshtab


The effect of Li+ co-doping on crystal phase formation and photoluminescence (PL) of Mn4+ activated magnesium titanate films produced by a solid state reaction method at different temperatures (800–1200 °C) has been investigated by using X-ray diffraction (XRD), diffuse reflectance and PL spectroscopy. The chemical composition of sintered films was estimated by energy dispersive X-ray spectroscopy. The concentration of Mn impurity estimated by Electron spin resonance was about 5 × 1016 cm−3. The XRD study of the annealed films revealed several magnesium titanate crystal phases, such as Mg2TiO4, MgTiO3 and MgTi2O5. The contribution of each phase depended strongly on the annealing temperature and the presence of Li+ additive. Furthermore, Li+ co-doping facilitated the formation of both MgTiO3 and Mg2TiO4 phases, especially at lower annealing temperatures. The PL spectra showed two bands centered at 660 and 710 nm and ascribed to the 2E → 4A2 spin-forbidden transition of the Mn4+ ion in the Mg2TiO4 and MgTiO3, respectively. In Li co-doped films, the integrated intensity of Mn4+ luminescence was found several times stronger compared to Li-undoped films that was ascribed mainly to flux effect of lithium.



This work was partly supported via Bilateral DNIPRO program (project M/7-2017 in Ukraine and #37884WC in France) funded by the Ministry of Education and Research of Ukraine, by the Ministries of Foreign Affairs and International Development (MAEDI) and the Ministry of Education, Higher Education and of Research (MENESR) in France, as well as by National Academy of Sciences of Ukraine (project III-10-15).


  1. 1.
    D. Chen, Y. Zhou, J. Zhong, RSC Adv. 6, 86285 (2016)CrossRefGoogle Scholar
  2. 2.
    Z. Zhou, N. Zhou, M. Xia, Y. Meiso, H.T.B. Hintzen, J. Mater. Chem. C 4, 9143 (2016)CrossRefGoogle Scholar
  3. 3.
    T.-M. Chen, J.T. Luo, United States Patent, US 7(846), 350 B2 (2010)Google Scholar
  4. 4.
    X. Huang, Nat. Photonics 8, 748 (2014)CrossRefGoogle Scholar
  5. 5.
    G. Li, Y. Tian, Y. Zhao, J. Lin, Chem. Soc. Rev. 44, 8688 (2015)CrossRefGoogle Scholar
  6. 6.
    T. Ye, S. Li, X. Wu, M. Xu, X. Wei, K. Wang, H. Bao, J. Wang, J. Chen, J. Mater. Chem. C 1, 4327 (2013)CrossRefGoogle Scholar
  7. 7.
    M.M. Medic, M.G. Brik, G. Drazic, Z.M. Antic, V.M. Lojpur, M.D. Dramicanin, J. Phys. Chem. C 119, 724 (2015)CrossRefGoogle Scholar
  8. 8.
    S. Kawakita, H. Kominami, K. Hara, Phys. Status Solidi C 12, 805 (2015)CrossRefGoogle Scholar
  9. 9.
    Z. Qiu, T. Luo, J. Zhang, W. Zhou, L. Yu, S. Lian, J. Lumin. 158, 130 (2015)CrossRefGoogle Scholar
  10. 10.
    J. Lu, Y. Pan, J. Wang, X. Chen, S. Huang, G. Liu, RSC Adv. 3, 4510 (2013)CrossRefGoogle Scholar
  11. 11.
    R. Cao, J. Huang, X. Ceng, Z. Luo, W. Ruan, Q. Hu, Ceram. Int. 42, 13296 (2016)CrossRefGoogle Scholar
  12. 12.
    M. Peng, X. Yin, P.A. Tanner, M.G. Brik, P. Li, Chem. Mater. 27, 2938 (2015)CrossRefGoogle Scholar
  13. 13.
    J. Long, Y. Wang, R. Ma, C. Ma, X. Yuan, Z. Wen, M. Du, Y. Cao, Inorg. Chem. 56, 3269 (2017)CrossRefGoogle Scholar
  14. 14.
    Y.X. Pan, G.K. Liu, J. Lumin. 131, 465 (2011)CrossRefGoogle Scholar
  15. 15.
    D. Chen, Y. Zhou, W. Xu, J. Zhong, Z. Ji, W. Xiang, J. Mater. Chem. C 4, 1704 (2016)CrossRefGoogle Scholar
  16. 16.
    T. Murata, T. Tanoue, M. Iwasaki, K. Morinaga, T. Hase, J. Lumin. 114, 207 (2005)CrossRefGoogle Scholar
  17. 17.
    K. Seki, S. Kamei, K. Uematsu, T. Ishigaki, K. Toda, M. Sato, J. Ceram. Process. Res. 14, s67 (2013)Google Scholar
  18. 18.
    M.G. Brik, Y.X. Pan, G.K. Liu, J. Alloys Compd. 509, 1452 (2011)CrossRefGoogle Scholar
  19. 19.
    M. Valant, D. Suvorov, R.C. Pullar, K. Sarma, N. Mc, N. Alford, J. Eur. Ceram. Soc. 26, 2777 (2006)CrossRefGoogle Scholar
  20. 20.
    Yi-D. Zhang, Di Zhou, N. Alford, J. Am. Ceram. Soc. 99, 3645 (2016)CrossRefGoogle Scholar
  21. 21.
    J. Bernard, D. Houivet, M. Hervieu, J.M. Haussonne, Solid State Sci. 8, 598 (2006)CrossRefGoogle Scholar
  22. 22.
    G. Kortüm, W. Braun, G. Herzog, Angew. Chem. Int. Edit. 2, 333 (1963)CrossRefGoogle Scholar
  23. 23.
    M.A. Petrova, G.A. Mikirticheva, A.S. Novikova, V.F. Popova, J. Mater. Res. 12, 2584 (1997)CrossRefGoogle Scholar
  24. 24.
    M. Landmann, E. Rauls, W.G. Schmidt, J. Phys. 24, 195503 (2012)Google Scholar
  25. 25.
    J. Tauc, A. Menth, J. Non-Cryst. Solids 8–10, 569 (1972)CrossRefGoogle Scholar
  26. 26.
    T.S. Kumar, R.K. Bhuyan, D. Pamu, Appl. Surf. Sci. 264, 184 (2013)CrossRefGoogle Scholar
  27. 27.
    R.K. Bhuyan, T.S. Kumar, A. Perumal, S. Ravi, D. Pamu, Surf. Coat. Technol. 221, 196 (2013)CrossRefGoogle Scholar
  28. 28.
    V. Đorđević, M.G. Brik, A.M. Srivastava, M. Medić, P. Vulić, E. Glais, B. Viana, M.D. Dramićanin, Opt. Mater. 74, 46 (2017)CrossRefGoogle Scholar
  29. 29.
    J. Long, C. Ma, Y. Wang, X. Yuan, M. Du, R. Ma, Z. Wen, J. Zhang, Y. Cao, Mat. Res. Bull. 85, 234 (2017)CrossRefGoogle Scholar
  30. 30.
    R. Louat, A. Louat, E. Duval, Phys. Status Solidi B 46, 559 (1971)CrossRefGoogle Scholar
  31. 31.
    M.G. Brik, S.J. Camardello, A.M. Srivastava, ECS J. Solid State Sci. Technol. 4, R39 (2015)CrossRefGoogle Scholar
  32. 32.
    J.R. Ramya, K.T. Arul, K. Elayaraja, S.N. Kalkura, Ceram. Int. 40, 16707 (2014)CrossRefGoogle Scholar
  33. 33.
    K.T. Arul, E. Kolanthai, E. Manikandan, G.M. Bhalerao, V.S. Chandra, J.R. Ramya, U.K. Mudali, K.G.M. Nair, S.N. Kalkura, Mat. Res. Bull. 67, 55 (2015)CrossRefGoogle Scholar
  34. 34.
    L. Khomenkova, V.I. Kushnirenko, M.M. Osipyonok, O.F. Syngaivsky, T.V. Zashivailo, G.S. Pekar, Y.O. Polishchuk, V.P. Kladko, L.V. Borkovska, Phys. Status Solidi C 12, 1144 (2015)CrossRefGoogle Scholar
  35. 35.
    J. Chen, C. Li, Z. Hui, Y. Liu, Inorg. Chem. 56, 1144 (2017)CrossRefGoogle Scholar
  36. 36.
    J. Zhou, Y. Wang, B. Liu, J. Liu, J. Phys. Chem. Solids. 72, 995 (2011)CrossRefGoogle Scholar
  37. 37.
    A. Lacanilao, G. Wallez, L. Mazerolles, V. Buissette, T. Le Mercier, F. Aurissergues, M.-F. Trichet, N. Dupre´, B. Pavageau, L. Servant, B. Viana, Mat. Res. Bull. 48, 2960 (2013)CrossRefGoogle Scholar
  38. 38.
    D. Kim, K.-W. Jeon, J.S. Jin, S.-G. Kang, D.-K. Seo, J.-C. Park, RSC Adv. 5, 105339 (2015)CrossRefGoogle Scholar
  39. 39.
    S.M. Rafiaei, Mater. Sci. 34, 780 (2016)Google Scholar
  40. 40.
    S. Khan, H. Choi, S.Y. Lee, K.-R. Lee, O.M. Ntwaeaborwa, S. Kim, S.-H. Cho, Inorg. Chem. 56, 12139 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • L. Borkovska
    • 1
  • L. Khomenkova
    • 1
  • I. Markevich
    • 1
  • M. Osipyonok
    • 1
  • T. Stara
    • 1
  • O. Gudymenko
    • 1
  • V. Kladko
    • 1
  • M. Baran
    • 1
  • S. Lavoryk
    • 1
    • 2
  • X. Portier
    • 3
  • T. Kryshtab
    • 4
  1. 1.V. Lashkaryov Institute of Semiconductor Physics of NAS of UkraineKyivUkraine
  2. 2.NanoMedTech LLCKyivUkraine
  3. 3.CIMAP, Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRSCaenFrance
  4. 4.Instituto Politécnico Nacional – ESFMMexico CityMexico

Personalised recommendations