Skip to main content
Log in

Isothermal sulfur condensation into carbon nanotube/nitrogen-doped graphene composite for high performance lithium–sulfur batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nitrogen-doped graphene (NG) is a promising material for fabricating high-performance lithium–sulfur batteries. Here a facile hydrothermal method was used to synthesize the NG and then the composite of NG and SWCNT (NG/SWCNT) was obtained by mixing with single-walled carbon nanotubes (SWCNT) via a simple ultrasonic method. Finally, the NG/SWCNT-sulfur composite (NG/SWCNT-S) is synthesized via an isothermal method that enables rapid vapor infiltration of sulfur into carbon nanotubes. The resulting sulfur-containing cathode shows a good capacity performance, reaching high initial capacities of 1199.6 mAh g−1 at 0.1 C and 725.2 mAh g−1 at 1 C. The optimized electrochemical performance can be attributed to the NG addition which leads to an effective improvement of sulfur utilization and seizing polysulfides during cycling. Moreover, we show that the vapor infiltration method based on the thermodynamics of capillary condensation on nanoscale surfaces offers a new idea for assembling cathode, compared to the traditional melt infiltration method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P.G. Bruce, Energy storage beyond the horizon: rechargeable lithium batteries. Solid State Ionics 179, 752–760 (2008)

    CAS  Google Scholar 

  2. M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008)

    CAS  Google Scholar 

  3. J. Kim, D.J. Lee, H.G. Jung et al., An advanced lithium-sulfur battery. Adv. Funct. Mater. 23, 1076–1080 (2013)

    CAS  Google Scholar 

  4. A. Manthiram, Y. Fu, Y.S. Su, Challenges and prospects of lithium sulfur batteries. Acc. Chem. Res. 46, 1125–1134 (2012)

    Google Scholar 

  5. G.C. Li, G.R. Li, S.H. Ye et al., A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv. Energy Mater. 2, 1238–1245 (2012)

    CAS  Google Scholar 

  6. R.D. Rauh, K.M. Abraham, G.F. Pearson et al., A lithium/dissolved sulfur battery with an organic electrolyte. J. Electrochem. Soc. 126, 523–527 (1979)

    CAS  Google Scholar 

  7. J. Shim, K.A. Striebel, E.J. Cairns, The lithium/sulfur rechargeable cell. J. Electrochem. Soc. 149, A1321–A1325 (2002)

    CAS  Google Scholar 

  8. Y.X. Yin, S. Xin, Y.G. Guo et al., Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52, 13186–13200 (2013)

    CAS  Google Scholar 

  9. Z. Li, H.B. Wu, X.W. Lou, Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries. Energy Environ. Sci. 9, 3061–3070 (2016)

    CAS  Google Scholar 

  10. S.W. Luo, M.J. Yao, S. Lei et al., Freestanding reduced graphene oxide-sulfur composite films for highly stable lithium-sulfur batteries. Nanoscale 9, 4646–4651 (2017)

    CAS  Google Scholar 

  11. S.H. Choi, D.H. Kim, A.V. Raghu et al., Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J. Macromol. Sci. 51, 197–207 (2012)

    CAS  Google Scholar 

  12. M. Hassan, E. Haque, K.R. Reddy et al., Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale 6, 11988–19994 (2014)

    CAS  Google Scholar 

  13. K.R. Reddy, M. Hassan, V.G. Gomes, Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl. Catal. A 489, 1–16 (2015)

    CAS  Google Scholar 

  14. D.R. Son, A.V. Raghu, K.R. Reddy et al., Compatibility of thermally reduced graphene with polyesters. J. Macromol. Sci. 55, 1099–1110 (2016)

    CAS  Google Scholar 

  15. F.Z. Amir, V.H. Pham, D.W. Mullinax et al., Enhanced performance of HRGO-RuO2 solid state flexible supercapacitors fabricated by electrophoretic deposition. Carbon 107, 338–343 (2016)

    CAS  Google Scholar 

  16. D.C. Higgins, M.A. Hoque, F. Hassan et al., Oxygen reduction on graphene-carbon nanotube composites doped sequentially with nitrogen and sulfur. ACS Catal. 4, 2734–2740 (2014)

    CAS  Google Scholar 

  17. J.R. Xiao, H.Z. Wang, X.Y. Li et al., N-doped carbon nanotubes as cathode material in Li-S batteries. J. Mater. Sci.: Mater. Electron. 26, 7895–7900 (2015)

    CAS  Google Scholar 

  18. M.U. Khan, K.R. Reddy, T. Snguanwongchai et al., Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization. Colloid Polym. Sci. 294, 1599–1610 (2016)

    CAS  Google Scholar 

  19. H.M. Heise, R. Kuckuk, A.K. Ojha et al., Characterisation of carbonaceous materials using Raman spectroscopy: a comparison of carbon nanotube filters, single- and multi-walled nanotubes, graphitised porous carbon and graphite. J. Raman Spectrosc. 40, 344–353 (2009)

    CAS  Google Scholar 

  20. K.R. Reddy, V.G. Gomes, M. Hassan, Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis. Mater. Res. Express 1, 015012 (2014)

    Google Scholar 

  21. M. Cakici, K.R. Reddy, F. Alonso-Marroquin, Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes. Chem. Eng. J. 309, 151–158 (2017)

    CAS  Google Scholar 

  22. Y. Jiang, M. Lu, X.T. Ling et al., One-step hydrothermal synthesis of three-dimensional porous graphene aerogels/sulfur nanocrystals for lithium–sulfur batteries. J. Alloys Compd. 645, 509–516 (2015)

    CAS  Google Scholar 

  23. K.R. Reddy, B.C. Sin, K.S. Ryu et al., In situ self-organization of carbon black-polyaniline composites from nanospheres to nanorods: synthesis, morphology, structure and electrical conductivity. Synth. Met. 159, 1934–1939 (2009)

    CAS  Google Scholar 

  24. H.Y. Qian, J. Tang, M.S. Hossain et al., Localization of platinum nanoparticles on inner walls of mesoporous hollow carbon spheres for improvement of electrochemical stability. Nanoscale 9, 16264–16272 (2017)

    CAS  Google Scholar 

  25. J. Liang, Z.H. Sun, F. Li et al., Carbon materials for Li–S batteries: functional evolution and performance improvement. Energy Storage Mater. 2, 76–106 (2016)

    Google Scholar 

  26. K.R. Reddy, K. Lee, A.I. Gopalan et al., Synthesis of metal (Fe or Pd)/alloy (Fe-Pd)-nanoparticles-embedded multiwall carbon nanotube/sulfonated polyaniline composites by γ irradiation. J. Polym. Sci. 44, 3355–3364 (2006)

    CAS  Google Scholar 

  27. K.R. Reddy, B.C. Sin, C.H. Yoo et al., A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles. Scr. Mater. 58, 1010–1013 (2008)

    CAS  Google Scholar 

  28. Y.R. Lee, S.C. Kim, H. Lee et al., Graphite oxides as effective fire retardants of epoxy resin. Macromol. Res. 19, 66–71 (2011)

    CAS  Google Scholar 

  29. M. Seredych, R. Chen, T.J. Bandosz, Effects of the addition of graphite oxide to the precursor of a nanoporous carbon on the electrochemical performance of the resulting carbonaceous composites. Carbon 50, 4144–4154 (2012)

    CAS  Google Scholar 

  30. L. Li, G. Zhou, L.C. Yin et al., Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for Li S batteries. Carbon 108, 120–126 (2016)

    CAS  Google Scholar 

  31. Y.C. Qiu, W.F. Li, W. Zhao et al., High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 14, 4821–4827 (2014)

    CAS  Google Scholar 

  32. R.E. Carter, L. Oakes, N. Muralidharan et al., Isothermal sulfur condensation into carbon scaffolds: improved loading, performance, and scalability for lithium–sulfur battery cathodes. J. Phys. Chem. C 121, 7718–7727 (2017)

    Google Scholar 

  33. H.B. Wang, C.J. Zhang, Z.H. Liu et al., Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J. Mater. Chem. 21, 5430–5434 (2011)

    CAS  Google Scholar 

  34. Y. Zhao, Z. Bakenova, Y.G. Zhang et al., High performance sulfur/nitrogen-doped graphene cathode for lithium/sulfur batteries. Ionics 21, 1925–1930 (2015)

    CAS  Google Scholar 

  35. R.J. Chen, T. Zhao, J. Lu et al., Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries. Nano Lett. 13, 4642–4649 (2013)

    CAS  Google Scholar 

  36. G.M. Zhou, Y.B. Zhao, A. Manthiram, Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li-S batteries. Adv. Energy Mater. (2015). https://doi.org/10.1002/aenm.201402263

    Article  Google Scholar 

  37. X.W. Wang, Z.A. Zhang, Y.H. Qu et al., Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium–sulfur batteries. J. Power Sources 256, 361–368 (2014)

    CAS  Google Scholar 

  38. F. Kapteijn, J.A. Moulijn, S. Matzner et al., The development of nitrogen functionality in model chars during gasification in CO2 and O2. Carbon 37, 1143–1150 (1999)

    CAS  Google Scholar 

  39. J.X. Song, M.L. Gordin, T. Xu et al., Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes. Angew. Chem. Int. Ed. 54, 4325–4329 (2015)

    CAS  Google Scholar 

  40. H. Shan, X.F. Li, Y.H. Cui et al., Sulfur/nitrogen dual-doped porous graphene aerogels enhancing anode performance of lithium ion batteries. Electrochim. Acta 205, 188–197 (2016)

    CAS  Google Scholar 

  41. D.N. Futaba., K. Hata, T. Yamada et al., Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nature Mater. 5, 987–994 (2006)

    CAS  Google Scholar 

  42. M.Q. Zhao, X.F. Liu, Q. Zhang, Graphene single-walled carbon nanotube hybrids one-step catalytic growth and applications for high-rate Li-S batteries. ACS Nano 6, 10759–10769 (2012)

    CAS  Google Scholar 

  43. C. Wang, X.S. Wang, Y.J. Wang et al., Macroporous free-standing nano-sulfur/reduced graphene oxide paper as stable cathode for lithium-sulfur battery. Nano Energy 11, 678–686 (2015)

    CAS  Google Scholar 

  44. B. Szato, O. berkesi, P. Forgo et al., Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18, 2740–2749 (2006)

    Google Scholar 

  45. J.W. Lee, J.M. Ko, J. Kim, Hydrothermal preparation of nitrogen-doped graphene sheets via hexamethylenetetramine for application as supercapacitor electrodes. Electrochim. Acta 85, 459–466 (2012)

    CAS  Google Scholar 

  46. N. Wu, X.L. She, D.J. Yang et al., Synthesis of network reduced graphene oxide in polystyrene matrix by a two-step reduction method for superior conductivity of the composite. J. Mater. Chem. 22, 17254–17261 (2012)

    CAS  Google Scholar 

  47. J.L. Zhang, H.J. Yang, G.X. Shen et al., Reduction of graphene oxide via l-ascorbic acid. Chem. Commun. 46, 1112–1114 (2010)

    CAS  Google Scholar 

  48. D.H. Long, W. Li, L.C. Ling et al., Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir 26, 16096–16102 (2010)

    CAS  Google Scholar 

  49. B.P. Vinayan, R. Nagar, V. Raman et al., Synthesis of graphene-multiwalled carbon nanotubes hybrid nanostructure by strengthened electrostatic interaction and its lithium ion battery application. J. Mater. Chem. 22, 9949–9956 (2012)

    CAS  Google Scholar 

  50. M.F. Islam, E. Rojas, D.M. Bergey et al., High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 3, 269–273 (2003)

    CAS  Google Scholar 

  51. V.C. Moore, M.S. Strano, E.H. Haroz et al., Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3, 1379–1382 (2003)

    CAS  Google Scholar 

  52. Q. Cheng, J. Tang, J. Ma et al., Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys. Chem. Chem. Phys. 13, 17615–17624 (2011)

    CAS  Google Scholar 

  53. J. Kim, L.J. Cote, F. Kim et al., Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 132, 8180–8186 (2010)

    CAS  Google Scholar 

  54. B. Ding, C.Z. Yuan, L.F. Shen et al., Chemically tailoring the nanostructure of graphenenanosheets to confine sulfur for high-performance lithium-sulfur batteries. J. Mater. Chem. A 1, 1096–1101 (2013)

    CAS  Google Scholar 

  55. C.X. Zu, A. Manthiram, Hydroxylated graphene-sulfur nanocomposites for high-rate lithium-sulfur batteries. Adv. Energy Mater. 3, 1008–1012 (2013)

    CAS  Google Scholar 

  56. X.X. Gu, C.J. Tong, C. Lai et al., A porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li–S batteries. J. Mater. Chem. A 3, 16670–16678 (2015)

    CAS  Google Scholar 

  57. F.J. Sun, J.T. Wang, H.C. Chen et al., High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li-S batteries. ACS Appl. Mater. Interfaces 5, 5630–5638 (2013)

    CAS  Google Scholar 

  58. C. Li, X.L. Sui, Z.B. Wang et al., 3D N-doped graphene nanomesh foam for long cycle life lithium-sulfur battery. Chem. Eng. J. 326, 265–272 (2017)

    CAS  Google Scholar 

  59. S.H. Yu, B. Lee, S. Choi et al., Enhancement of electrochemical properties by polysulfide trap in graphene-coated sulfur cathode on patterned current collector. Chem. Commun. 52, 3203–3206 (2016)

    CAS  Google Scholar 

  60. J. Schuster, G. He, B. Mandlmeier et al., Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. Angew. Chem. Int. Ed. 51, 3591–3595 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC Grants 2175011441), Suzhou Science and Technology Programme (SYG201623), Suzhou Industrial Park Initiative Platform Development for Suzhou Municipal Key Lab for New Energy Technology (RR0140), and Key Program Special Fund in XJTLU (KSF-A-04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Lu or Li Yang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6025 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, X., Yi, R., Yu, Z. et al. Isothermal sulfur condensation into carbon nanotube/nitrogen-doped graphene composite for high performance lithium–sulfur batteries. J Mater Sci: Mater Electron 29, 10071–10081 (2018). https://doi.org/10.1007/s10854-018-9051-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9051-y

Navigation