Polyurethane foam derived nitrogen-enriched porous carbon/reduced graphene oxide composite with sandwich-like nanoarchitectures for supercapacitors

  • Jian Zhang
  • Lei Guo
  • Qiuyu Meng
  • Wenqian Wang
  • Zhaohui Li
  • Mengmeng Chang
  • Meihua Liu
  • Zheng Jin
  • Kai Zhao
Article
  • 49 Downloads

Abstract

A new type of polyurethane (PU) foam derived nitrogen-enriched porous carbon/reduced graphene oxide (PU/rGO) composite was synthesized and studied for the first time. By taking advantages of PU foam as carbon skeleton precursor, GO nanosheets wrapped onto the skeleton’s surface through hydrothermal process, then the stable porous sandwich-like nanoarchitectures built after carbonization process. Moreover, the wrapped GO can be transformed into rGO due to thermal reduction during the carbonization process. When being applied as supercapacitor electrodes, the prepared PU/rGO composite could achieve an extremely high specific capacitance of 490 and 341.7 F g−1 at a current density of 1 and 20 A g−1, respectively. After 5000 cycles, the specific retention yielded to 97.3% at 1 A g−1. Resulting from these merits, the as-assembled symmetric supercapacitor device with a wide operating voltage window of 1.5 V exhibit an excellent energy density of 21.66 Wh kg−1 at a power density of 825 W kg−1 and remain 7.5 Wh kg−1 even at a high power density of 2250 W kg−1. Most importantly, this work may offer a strategy for converting the PU foam wastes into carbon material with excellent electrochemical performance applied on energy storage.

Notes

Acknowledgements

The authors gratefully acknowledge the National Key Research and Development Program of China (Grant Numbers 2017YFD0500706 and 2017YFD0500603), National Natural Science Foundation of China (Grant Numbers 31570929 and 31771000), Natural Science Foundation of Heilongjiang Province (Grant Number C2017058), Innovation Foundation of Harbin (Grant Number 2017RAXXJ001), Students Innovation and Entrepreneurship Training project of China (Grant Number 201710212013), Graduate Student Innovation Research Project Funding of Heilongjiang University (Grant Number YJSCX2017-159HLJU) and Key Scientific Technological Planning Project of Harbin (Grant Number 2016AB3BN036).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    L. Fan, L. Yang, X.Y. Ni, J. Han, R. Guo, C.F. Zhang, Carbon 107, 629 (2016)CrossRefGoogle Scholar
  2. 2.
    M. Manoj, K.M. Anilkumar, B. Jinisha, S. Jayalekshmi, J. Mater. Sci. 28, 14323 (2017)Google Scholar
  3. 3.
    F. Barzegar, A. Bello, J. Dangbegnon, N. Manyala, X.H. Xia, Appl. Energy 207, 417 (2017)CrossRefGoogle Scholar
  4. 4.
    X.L. Su, L. Fu, M.Y. Cheng, J.H. Yang, X.X. Guan, X.C. Zheng, Appl. Surf. Sci. 426, 924 (2017)CrossRefGoogle Scholar
  5. 5.
    Y. Yang, F. Yang, H.R. Hu, S. Lee, Y. Wang, H.R. Zhao, D.H. Zeng, B. Zhou, S. Hao, Chem. Eng. J. 307, 583 (2017)CrossRefGoogle Scholar
  6. 6.
    H.M. Ji, X.L. Liu, Z.J. Liu, B. Yan, L. Chen, Y.F. Xie, C. Liu, W.H. Hou, G. Yang, Adv. Funct. Mater. 25, 1886 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Gopiraman, D. Deng, B.S. Kim, I.M. Chung, I.S. Kim, Appl. Surf. Sci. 409, 52 (2017)CrossRefGoogle Scholar
  8. 8.
    X.L. Wu, L.L. Jiang, C.L. Long, Z.J. Fan, Nano Energy 13, 527 (2015)CrossRefGoogle Scholar
  9. 9.
    B.C. Yang, C.X. Hao, F.S. Wen, B.C. Wang, C.P. Mu, J.Y. Xiang, L. Li, B. Xu, Z.S. Zhao, Z.Y. Liu, Y.J. Tian, ACS Appl. Mater. Interfaces 9, 44478 (2017)CrossRefGoogle Scholar
  10. 10.
    S.A. Pande, B. Pandit, B.R. Sankapal, J. Colloid Interface Sci. 514, 740 (2017)CrossRefGoogle Scholar
  11. 11.
    P.C. Banerjee, D.E. Lobo, T. Williams, M. Shaibani, M.R. Hill, M. Majumder, J. Mater. Chem. A 5, 25338 (2017)CrossRefGoogle Scholar
  12. 12.
    M. Javed, S.M. Abbas, M. Siddiq, D.X. Han, L. Niu, J. Phys. Chem. Solids 113, 220 (2018)CrossRefGoogle Scholar
  13. 13.
    B. Han, E.J. Lee, J.Y. Kim, J.H. Bang, New J. Chem. 35, 1996 (2015)CrossRefGoogle Scholar
  14. 14.
    C.M. Yang, Y.J. Kim, J. Miyawaki, Y.A. Kim, M. Yudasaka, S. Iijima, K. Kaneko, Applications, J. Phys. Chem. C 119, 2935 (2015)CrossRefGoogle Scholar
  15. 15.
    A. Elmouwahidi, J.C. Quibén, J.F. Vilches, A.P. Cadenas, F.M. Hódar, F.C. Marín, Chem. Eng. J. 334, 1835 (2018)CrossRefGoogle Scholar
  16. 16.
    C. Chen, D.F. Yu, G.Y. Zhao, B.S. Du, W. Tang, L. Sun, Y. Sun, F. Besenbacher, M. Yu, Nano Energy 27, 377 (2016)CrossRefGoogle Scholar
  17. 17.
    Y. Zhao, F.Y. Xie, C. Zhang, R. Kong, S. Feng, J. Jiang, Microporous Mesoporous Mater. 240, 73 (2017)CrossRefGoogle Scholar
  18. 18.
    J.H. Hou, K. Jiang, R. Wei, M. Tahir, X.G. Wu, M. Shen, X.Z. Wang, C.B. Cao, ACS Appl. Mater. Interfaces 9, 30626 (2017)CrossRefGoogle Scholar
  19. 19.
    G.Y. Zhu, T. Chena, Y. Hu, L.B. Ma, P.P. Chen, H.L. Lv, Y.R. Wang, J. Liang, X.J. Li, C.Z. Yan, H.F. Zhu, H.X. Liu, Z.X. Tie, Z. Jin, J. Liu, Nano Energy 33, 229 (2017)CrossRefGoogle Scholar
  20. 20.
    J. Pang, W.F. Zhang, J.L. Zhang, G.P. Cao, M.F. Han, Y.S. Yang, Green Chem. 19, 3916 (2017)CrossRefGoogle Scholar
  21. 21.
    Z.S. Li, B.L. Li, Z.S. Liu, D.H. Li, H.Q. Wang, Q.Y. Li, Electrochim. Acta 190, 378 (2016)CrossRefGoogle Scholar
  22. 22.
    Z.S. Li, L. Zhang, B.L. Li, Z.S. Liu, Z.H. Liu, H.Q. Wang, Q.Y. Li, Chem. Eng. J. 313, 1242 (2017)CrossRefGoogle Scholar
  23. 23.
    L.L. Jiao, H.H. Xiao, Q.S. Wang, J.H. Sun, Polym. Degrad. Stab. 98, 2687 (2013)CrossRefGoogle Scholar
  24. 24.
    X.Q. Zhang, W. Zou, Z.J. Du, H.Q. Li, S.X. Li, M.J. Liu, C. Zhang, W.L. Guo, Mater. Chem. Phys. 164, 78 (2015)CrossRefGoogle Scholar
  25. 25.
    S. Xiao, S.H. Liu, J.Q. Zhang, Y. Wang, J. Power Sources 293, 119 (2015)CrossRefGoogle Scholar
  26. 26.
    A.T. Vilian, S. An, S.R. Choe, C.H. Kwak, Y.S. Huh, J. Lee, Y.K. Han, Biosens. Bioelectron. 86, 122 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Seok, S. Shin, T.J. Lee, J.M. Jeong, M. Yan, D.H. Kim, J.Y. Park, S.J. Lee, B.G. Choi, K.G. Lee, ACS Appl. Mater. Interfaces 7, 4699 (2015)CrossRefGoogle Scholar
  28. 28.
    M. Su’ait, A. Ahmad, K. Badri, N. Mohamed, M. Rahman, C. Ricardo, R. Scardi, Int. J. Hydrogen Energy 39, 005 (2014)Google Scholar
  29. 29.
    S.S. Kalaivani, A. Muthukrishnaraj, S. Sivanesan, L. Ravikumar, Process Saf. Environ. Prot. 104, 11 (2016)CrossRefGoogle Scholar
  30. 30.
    A.E. Vilian, S. An, S.R. Choe, C.H. Kwak, Y.S. Huh, J. Lee, Y.K. Han, Biosens. Bioelectron. 86, 122 (2016)CrossRefGoogle Scholar
  31. 31.
    S.S. Xiang, X.N. Yang, X.T. Lin, C.S. Chang, H.A. Que, M. Li, J. Solid State Electrochem. 21, 1457 (2017)CrossRefGoogle Scholar
  32. 32.
    W. Hummers, E. Offeman, J. Am. Chem. Soc. 80, 1339 (1985)CrossRefGoogle Scholar
  33. 33.
    C.X. Liu, G.Y. Han, Y.Z. Chang, Y.M. Xiao, H.H. Zhou, G.Q. Shi, Chem. Eng. J. 328, 25 (2017)CrossRefGoogle Scholar
  34. 34.
    Y.Q. Zhao, L. Lu, P.Y. Tao, Y.J. Zhang, X.T. Gong, Z. Yang, G.Q. Zhang, H.L. Li, J. Power Sources 307, 391 (2016)CrossRefGoogle Scholar
  35. 35.
    Z.Y. Lin, G.H. Waller, Y. Liu, M.L. Liu, C.P. Wong, Nano Energy 2, 241 (2013)CrossRefGoogle Scholar
  36. 36.
    A. Choudhury, J.H. Kim, S.S. Mahapatra, K.S. Yang, D.J. Yang, ACS Sustain. Chem. Eng. 5, 2109 (2017)CrossRefGoogle Scholar
  37. 37.
    J. Yang, J.T. Hu, M. Zhu, Y. Zhao, H.B. Chen, F. Pan, J. Power Sources 365, 362 (2017)CrossRefGoogle Scholar
  38. 38.
    A.K. Mondal, K. Kretschmer, Y.F. Zhao, H. Liu, C.Y. Wang, B. Sun, G.X. Wang, Chem. Eur. J. 23, 3683 (2017)CrossRefGoogle Scholar
  39. 39.
    D.P. He, J. Niu, M.L. Dou, J. Ji, Y.Q. Huang, F. Wang, Electrochim. Acta 238, 310 (2017)CrossRefGoogle Scholar
  40. 40.
    Y.F. Wang, B.W. Chen, Z. Chang, X.W. Wang, F.X. Wang, L.X. Zhang, Y.S. Zhu, L.J. Fu, Y.P. Wu, J. Mater. Chem. A 5, 8981 (2017)CrossRefGoogle Scholar
  41. 41.
    H.Y. Liu, H.H. Song, X.H. Chen, S. Zhang, J.S. Zhou, Z.K. Ma, J. Power Sources 285, 303 (2015)CrossRefGoogle Scholar
  42. 42.
    F. Barzegar, A. Bello, J.K. Dangbegnon, N. Manyala, X.H. Xia, Appl. Energy 207, 417 (2017)CrossRefGoogle Scholar
  43. 43.
    Y. Chang, C.H. Yuan, C. Liu, J. Mao, Y.T. Li, H.Y. Wu, Y.Z. Wu, Y.T. Xu, B.R. Zeng, L.Z. Dai, J. Power Sources 365, 354 (2017)CrossRefGoogle Scholar
  44. 44.
    A. Sliwak, B. Grzyb, N. Díez, N. Díez, G. Gryglewicz, Appl. Surf. Sci. 399, 265 (2017)CrossRefGoogle Scholar
  45. 45.
    B. Xu, S. Hou, G. Cao, F. Wu, Y. .Yang, J. Mater. Chem. 22, 19088 (2012)CrossRefGoogle Scholar
  46. 46.
    D. He, J. Niu, D. Dou, J. Ji, Y. Huang, Y. Wang, Electrochim. Acta 238, 310 (2017)CrossRefGoogle Scholar
  47. 47.
    Q. Li, J.J. He, D.Q. Liu, H.W. Yue, S. Bai, B.L. Liu, L.L. Gu, D.Y. He, J. Alloys Compd. 693, 970 (2017)CrossRefGoogle Scholar
  48. 48.
    Y.J. Cai, Y. Luo, Y. Xiao, X. Zhao, Y.R. Liang, H. Hu, H.W. Dong, L.Y. Sun, Y.L. Liu, M.T. Zheng, ACS Appl. Mater. Interfaces 8, 33060 (2016)CrossRefGoogle Scholar
  49. 49.
    Q.X. Xie, S.H. W, Y.F. Zhang, P. Zhao, J. Electroanal. Chem. 801, 57 (2017)CrossRefGoogle Scholar
  50. 50.
    D.D. Liu, Y.S. Wang, Z.P. Qiu, Y.Y. Li, L. Wang, Y. Zhao, J. Zhou, RSC Adv. 8, 3974 (2018)CrossRefGoogle Scholar
  51. 51.
    Y.B. Zhou, J. Ren, L. Xia, H.L. Wu, F.Y. Xie, Q.J. Zheng, C.G. Xu, D.M. Lin, ChemElectroChem 12, (2017) 3181CrossRefGoogle Scholar
  52. 52.
    Z.Q. Hao, J.P. Cao, Y. Wu, X.Y. Zhao, Q.Q. Zhuang, X.Y. Wang, X.Y. Wei, J. Power Sources 361, 249 (2017)CrossRefGoogle Scholar
  53. 53.
    L.F. Zhu, F. Shen, R.L. Smith, L.L. Yan, L.Y. Li, X.H. Qi, Chem. Eng. J. 316, 770 (2017)CrossRefGoogle Scholar
  54. 54.
    W.X. Wang, H.Y. Quan, W.M. Gao, R. Zou, D.Z. Chen, Y.H. Dong, L. Guo, RSC Adv. 7, 16678 (2017)CrossRefGoogle Scholar
  55. 55.
    T.L. Cai, H.W. Wang, C.D. Jin, Q.F. Sun, Y.J. Nie, J. Mater. Sci. 29, 4334 (2018)Google Scholar
  56. 56.
    Y.H. Hwang, S.M. Lee, Y.J. Kim, Y.H. Kahng, K. Lee, Carbon 100, 7 (2016)CrossRefGoogle Scholar
  57. 57.
    X.Y. Li, M. Zhou, J. Wang, F.Y. Ge, Y.P. Zhao, S. Komarneni, Z.S. Cai, J. Power Sources 342, 762 (2017)CrossRefGoogle Scholar
  58. 58.
    Y.J. Li, G.L. Wang, T. Wei, Z.J. Fan, P. Yan, Nano Energy 9, 165 (2016)CrossRefGoogle Scholar
  59. 59.
    H.L. Tang, Y. Zeng, X. Gao, B. Yao, D. Liu, J.B. Wu, D.Y. Qu, K. Liu, Z.Z. Xie, H.N. Zhang, M. Pan, L. Huang, S. Jiang, Electrochim. Acta 194, 143 (2016)CrossRefGoogle Scholar
  60. 60.
    L.F. Zhu, F. Shen, R.S. Jr, L.L. Yan, L.Y. Li, X.H. Qi, Chem. Eng. J. 361, (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jian Zhang
    • 1
  • Lei Guo
    • 1
  • Qiuyu Meng
    • 1
  • Wenqian Wang
    • 2
  • Zhaohui Li
    • 1
  • Mengmeng Chang
    • 1
  • Meihua Liu
    • 1
  • Zheng Jin
    • 1
  • Kai Zhao
    • 2
  1. 1.Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and MaterialsHeilongjiang UniversityHarbinPeople’s Republic of China
  2. 2.Key Laboratory of Microbiology, School of Life ScienceHeilongjiang UniversityHarbinPeople’s Republic of China

Personalised recommendations