Synthesis of TiO2:Ce nanoparticles for development of ammonia gas sensors

Article
  • 22 Downloads

Abstract

A less time consuming and cost ineffective sol–gel method was used to synthesis TiO2 nanoparticles and TiO2:Ce nanoparticles. All the samples were characterized by XRD, UV–Vis, FTIR, PL, SEM, TEM and Raman analysis. The thermal properties were studied by TG/DTA analysis. XRD analysis confirms the formation of anatase TiO2 phase with a preferred orientation along (101) direction and that the lattice constants increased with increasing the Ce doping level. The UV–Vis reflectance spectra showed that cerium doping shift in the reflectance spectra to the visible region and increase the bandgap. The TEM images indicate the particle sizes in the range between 10 and 15 nm for anatase phase TiO2 at 400 °C. Raman spectroscopy was used to identify and quantity the amorphous and crystalline TiO2 phases. All the Ce-doped TiO2 samples showed higher PL intensity than undoped TiO2. The visible emission peaks of pure and Ce-doped TiO2 nanoparticles are mainly associated with oxygen vacancies. The impedance spectrum also exhibited a decreased semicircle radius with the exposure ammonia gas increase from 50 to 250 ppm thereafter slightly increased. Impedance spectroscopy analysis showed that the resistance variation due to grain boundaries significantly contributed to the gas sensor characteristics.

Notes

Acknowledgements

The authors are grateful thanks to SEM and TEM facility for Sophisticated Test and Instrumentation Centre, Cochin, XRD, PL, TGA and Raman Spectroscopy for IISc, Bangalore, and FTIR, UV for Government Engineering College, Burgur, Gas sensor studies for NIT Trichy for providing instrument facilities.

References

  1. 1.
    M. Behpour, M. Mehrzad, S.M. Ghoreishi, S.M. H-Mashkani, Controlled photocatalytic degradation of basic red 46 in textile industrial wastewater with the aid of N-S codoped TiO2 (NSTO). J. Mater. Sci.: Mater. Electron. 27, 4483–4488 (2016)Google Scholar
  2. 2.
    A.S. Nasab, M. Maddahfar, S.M. H-Mashkani, Ce(MoO4)2 nanostructures: synthesis, characterization, and its photocatalyst application the ultrasonic method. J. Mol. Liq. 216, 1–5 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Goudarzi, M.S. Niasari, M. Motaghedifard, S.M. H-Mashkani, Semiconductive Ti2O3 nanoparticles: facile synthesis in liquid phase, characterization and its applications as photocatalytic substrate and electrochemical sensor. J. Mol. Liq. 219, 720–727 (2016)CrossRefGoogle Scholar
  4. 4.
    M. Mansournia, S. Rafizadeh, S.M. H-Mashkani, M.H. Motaghedifard, Novel room temperature synthesis of ZnO nanosheets, characterization and potentials in light harvesting applications and electrochemical devices. Mater. Sci. Eng. C 65, 303–312 (2016)CrossRefGoogle Scholar
  5. 5.
    R. Kalai Selvan, A. Gedanken, P. Anilkumar, G. Manikandan, C. Karunakaran, Synthesis and characterization of rare earth orthovanadate (RVO4; R = La, Ce, Nd, Sm, Eu & Gd) nanorods/nanocrystals/nanospindles by a facile sonochemical method and their catalytic properties. J. Cluster Sci. 20, 291–305 (2009)CrossRefGoogle Scholar
  6. 6.
    M. Pal, J.G. Serrano, P. Santiago, U. Pal, Size-controlled synthesis of spherical TiO2 nanoparticles: morphology, crystallization, and phase transition. J. Phys. Chem. C 111, 96–102 (2007)CrossRefGoogle Scholar
  7. 7.
    H.-G. Choi, S.-M. Yong, D.-K. Kim, Synthesis and photocatalytic properties of SnO2-mixed and Sn-doped TiO2 nanoparticles. Korean J. Mater. Res. 22, 352–357 (2012)CrossRefGoogle Scholar
  8. 8.
    K.R. Nemade, S.A. Waghuley, Comparative study of carbon dioxide sensing by Sn doped TiO2 nanoparticles synthesized by microwave assisted and solid state diffusion route. Appl. Nanosci. 5, 419–424 (2015)CrossRefGoogle Scholar
  9. 9.
    Y.J. Choi, Z. Seeley, A.B. Yopadhyay, S. Bose, S.A. Akbar, Aluminum-doped TiO2 nano-powders for gas sensors. Sens. Actuators B 124, 111–117 (2007)CrossRefGoogle Scholar
  10. 10.
    P.K. Dutta, A. Ginwalla, B. Hogg, B.R. Patton, B. Chwieroth, Z. Liang, P. Gouma, M. Mills, S.A. Akbar, Interaction of carbon monoxide with anatase surfaces at high temperatures: optimization of a carbon monoxide sensor. J. Phys. Chem. B 103, 4412–4422 (1999)CrossRefGoogle Scholar
  11. 11.
    N. Savage, B. Chwieroth, A. Ginwalla, B.R. Patton, S.A. Akbar, P.K. Dutta, Composite N–P semiconducting titanium oxides as gas sensors. Sens. Actuators B 79, 17–27 (2001)CrossRefGoogle Scholar
  12. 12.
    A. Ruiz, G. Sakai, A. Cornet, K. Shimanoe, J.R. Morante, N. Yamazoe, Cr-doped TiO2 gas sensor for exhaust NO2 monitoring. Sens. Actuators B 93, 509–518 (2003)CrossRefGoogle Scholar
  13. 13.
    F. Bregani, C. Casale, L.E. Depero, I. Natali-Sora, D. Roba, L. Sangaletti, G.P. Toledo, Temperature effects on the size of anatase crystallites in Mo–TiO2 and W–TiO2 powders. Sens. Actuators B 31, 25–28 (1996)CrossRefGoogle Scholar
  14. 14.
    E. Comini, V. Guidi, C. Frigeri, I. Ricco, G. Sberveglieri, CO sensing properties of titanium and iron oxide nanosized thin films. Sens. Actuators B 77, 16–21 (2001)CrossRefGoogle Scholar
  15. 15.
    E. Comini, G. Faglia, G. Sberveglieri, Y.X. Li, W. Wlodarski, M.K. Ghantasala, Sensitivity enhancement towards ethanol and methanol of TiO2 films doped with Pt and Nb. Sens. Actuators B 64, 169–174 (2000)CrossRefGoogle Scholar
  16. 16.
    J. Ruiz, A. Arbiol, A. Cirera, J.R. Cornet, Morante, Surface activation by Pt-nanoclusters on titania for gas sensing applications. Mater. Sci. Eng. C 19, 105–109 (2002)CrossRefGoogle Scholar
  17. 17.
    X. Liu, J. Yang, L. Wang, X. Yang, L. Lu, X. Wang, An improvement on sol–gel method for preparing ultrafine and crystallized titania powder. Mater. Sci. Eng. A 289, 241–245 (2000)CrossRefGoogle Scholar
  18. 18.
    K. Shimizu, H. Imai, H. Hirashima, K. Tsukuma, Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions. Thin Solid Films 351, 220–224 (1999)CrossRefGoogle Scholar
  19. 19.
    M.R. TeresaViseu, M.I.C. Ferreira, Morphological characterisation of TiO2 films. Vacuum 52, 115–120 (1999)CrossRefGoogle Scholar
  20. 20.
    M.D. Blesic, Z.V. Saponjic, J.M. Nedeljkovic, D.P. Uskokovic, TiO2 films prepared by ultrasonic spray pyrolysis of nanosize precursor. Mater. Lett. 54, 298–303 (2002)CrossRefGoogle Scholar
  21. 21.
    M.C. Carotta, M. Ferroni, D. Gnani, V. Guidi, M. Merli, G. Martinelli, M.C. Casale, M. Notaro, Nanostructured pure and Nb-doped TiO2 as thick film gas sensors for environmental monitoring. Sens. Actuators B 58, 310–317 (1999)CrossRefGoogle Scholar
  22. 22.
    D.S. Lee, S.D. Han, J.S. Huh, D.D. Lee, Nitrogen oxides-sensing characteristics of WO3-based nanocrystalline thick film gas sensor. Sens. Actuators B 60, 57–63 (1999)CrossRefGoogle Scholar
  23. 23.
    A.M. Ruiz, J. Arbiol, A. Cornet, K. Shimanoe, J.R. Morante, N. Yamazoe, HRTEM/EELS analysis, structural characterization and sensor performances of hydrothermal nano-TiO2. Mater. Res. Soc. Symp. Proc. 828, A4.10.1–A4.10.6 (2005)Google Scholar
  24. 24.
    M.R. Mohammadi, D.J. Fray, M.C. Cordero-Cabrera, Sensor performance of nanostructured TiO2 thin films derived from particulate sol–gel route and polymeric fugitive agents. Sens. Actuators B 124, 74–83 (2007)CrossRefGoogle Scholar
  25. 25.
    M. Alijani, B.K. Kaleji, Optical and structural properties of TiO2 nanopowders with Ce/Sn doping at various calcinations temperature and time. Opt. Quant. Electron. 49, 34–50 (2017)CrossRefGoogle Scholar
  26. 26.
    Y.-F. chen, C.-Y. Lee, M.-Y. Yeng, H.-T. Chiu, The effect of calcination temperature on the crystallinity of TiO2 nanopowders. J. Cryst. Growth 247, 363–370 (2003)CrossRefGoogle Scholar
  27. 27.
    K. Nakagawa, Y. Murata, M. Kishida, M. Adachi, M. Hiro, K. Susa, Formation and reaction activity of CeO2 nanoparticles of cubic structure and various shaped CeO2-TiO2 composite nanostructures. Mater. Chem. Phys. 104, 30–39 (2007)CrossRefGoogle Scholar
  28. 28.
    K. Balachandran, R. Venckatesh, R. Sivaraj, K.V. Hemalatha, R. Mariappan, Enhancing power conversion efficiency of DSSC by doping SiO2 in TiO2 photoanodes. Mater. Sci. Semicond. Process. 35, 59–65 (2015)CrossRefGoogle Scholar
  29. 29.
    X. Fan, J. Wan, E. Liu, L. Sun, Y. Hu, H. Li, X. Hu, J. Fan, High efficiency photoelectrocatalytic hydrogen generation enabled Ag deposited and Ge doped TiO2 nanotube arrays. Ceram. Int. 41, 5107–5116 (2015)CrossRefGoogle Scholar
  30. 30.
    A. Nehal, M. Salahuddin, E.M. El-Kemary, Ibrahim, Synthesis and characterization of ZnO nanoparticles via precipitation method: effect of annealing temperature on particle size. Nanosci. Nanotechnol. 5, 82–88 (2015)Google Scholar
  31. 31.
    J. Zhang, Q. Xu, Z. Feng, C. Li, UV Raman spectroscopic studies on titania: phase transformation and significance of surface phase in photocatalysis. Environ. Benign Photocatal. (2010).  https://doi.org/10.1007/978-0-387-48444-0 Google Scholar
  32. 32.
    X. Deng, Z. Huang, W. Wang, R.N. Dave, Investigation of nanoparticle aggromerates properties using Monte Carlo simulations. Adv. Powder Technol. 27, 1971–1979 (2016)CrossRefGoogle Scholar
  33. 33.
    M.L. Eggersdorfer, S.E. Pratsinis, Agglomerates and aggregates of nanoparticles made in the gas phase. Adv. Powder Technol. 25, 71–90 (2014)CrossRefGoogle Scholar
  34. 34.
    F.B. Moges Tsega, Dejene, Structural and optical properties of Ce doped TiO2 nanoparticles using the sol-gel process. ECS J. Solid State Sci. Technol. 5, R17–R20 (2016)Google Scholar
  35. 35.
    P. Dennis Christy, N.S. Nirmala Jothi, N. Melikechi, P. Sagayaraj, Synthesis, structural and optical properties of well dispersed anatase TiO2 nanoparticles by non-hydrothermal method. Cryst. Res. Technol. 44, 484–488 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Research & Development CentreBharathiar UniversityCoimbatoreIndia
  2. 2.Department of ChemistryKPR Institute of Engineering and TechnologyCoimbatoreIndia

Personalised recommendations