Variable range hopping and relaxation mechanism in graphene oxide sheets containing sp3 hybridization induced localization

  • Rajesh Cheruku
  • D. Surya Bhaskaram
  • G. Govindaraj
Article
  • 35 Downloads

Abstract

The temperature dependent electrical properties of graphene oxide prepared by the modified Hummers method are investigated using broadband dielectric spectroscopy. The morphology and structure are confirmed by X-ray diffraction pattern and scanning electron microscope images. In the present work, we have studied the electrical properties of graphene oxide employing a recently proposed novel approach of the combined conduction and dielectric Cole–Cole formalism. The extracted dc conductivity values varies from 1.9 × 10−8 to 3.5 × 10− 5 S cm−1 as a function of temperature (153–353 K), show power-law behaviour, which is explained through Mott’s variable range hopping conduction mechanism. The density of states was found to be 6.02 × 1018 cm−3 eV−1. The conduction relaxation timescales and dielectric relaxation timescales of GO are following the power law. The physical origin of the non-Arrhenius dc conductivity behaviour of charge carriers is explained through structural heterogeneity in graphene oxide introduced due to sp2 and sp3 hybridization of carbon atoms. The range of hop was calculated to be 4.7–3.8 nm with hopping energy changing from 0.37 to 0.69 eV as a function of temperature.

Notes

Acknowledgements

The authors would like to thank Central Instrumentation Facility (CIF), Pondicherry University for BDS, DTA-TG, FT-IR, UV–Vis, Raman, SEM and EDX facilities.

References

  1. 1.
    H.R. Naderi, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, Appl. Surf. Sci. 423, 1025 (2017)CrossRefGoogle Scholar
  2. 2.
    A. Esmaeili, M.H. Entezari, J. Colloid Interface Sci. 432, 19 (2014)CrossRefGoogle Scholar
  3. 3.
    Y.-H. Yu, W.-F. Chi, W.-C. Huang, W.-S. Wang, C.-J. Shih, C.-H. Tsai, Org. Electron. 31, 207 (2016)CrossRefGoogle Scholar
  4. 4.
    C. Hontoria-Lucas, A.J. López-Peinado, J.d..D. López-González, M.L. Rojas-Cervantes, R.M. Martín-Aranda, Carbon N. Y. 33, 1585 (1995)CrossRefGoogle Scholar
  5. 5.
    A. Lerf, H. He, M. Forster, J. Klinowski, J. Phys. Chem. B 102, 4477 (1998)CrossRefGoogle Scholar
  6. 6.
    J.-A. Yan, L. Xian, M.Y. Chou, Phys. Rev. Lett. 103, 86802 (2009)CrossRefGoogle Scholar
  7. 7.
    K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Nat. Chem. 2, 1015 (2010)CrossRefGoogle Scholar
  8. 8.
    M. Jin, H.-K. Jeong, W.J. Yu, D.J. Bae, B.R. Kang, Y.H. Lee, J. Phys. D 42, 135109 (2009)CrossRefGoogle Scholar
  9. 9.
    G. Venugopal, K. Krishnamoorthy, R. Mohan, S.-J. Kim, Mater. Chem. Phys. 132, 29 (2012)CrossRefGoogle Scholar
  10. 10.
    D. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Nature 448, 457 (2007)CrossRefGoogle Scholar
  11. 11.
    N. Hu, L. Meng, R. Gao, Y. Wang, J. Chai, Z. Yang, E.S.-W. Kong, Y. Zhang, Nano-Micro Lett. 3, 215 (2011)CrossRefGoogle Scholar
  12. 12.
    X. Huang, C. Zhi, P. Jiang, D. Golberg, Y. Bando, T. Tanaka, Nanotechnology 23, 455705 (2012)CrossRefGoogle Scholar
  13. 13.
    E. Casero, A.M. Parra-Alfambra, M.D. Petit-Domínguez, F. Pariente, E. Lorenzo, C. Alonso, Electrochem. Commun. 20, 63 (2012)CrossRefGoogle Scholar
  14. 14.
    N.T. Ho, V. Senthilkumar, Y.S. Kim, Solid State Electron. 94, 61 (2014)CrossRefGoogle Scholar
  15. 15.
    V.P. Arya, V. Prasad, P.S. Anil Kumar, J. Phys. Condens. Matter 24, 245602 (2012)CrossRefGoogle Scholar
  16. 16.
    C. Godet, Diam. Relat. Mater. 12, 159 (2003)CrossRefGoogle Scholar
  17. 17.
    H.-J. Kim, D. Kim, S. Jung, S.N. Yi, Y.J. Yun, S.K. Chang, D.H. Ha, J. Phys. Chem. C 119, 28685 (2015)CrossRefGoogle Scholar
  18. 18.
    D. Joung, S.I. Khondaker, Phys. Rev. B 86, 235423 (2012)CrossRefGoogle Scholar
  19. 19.
    Z.H. Khan, M. Husain, T.P. Perng, N. Salah, S. Habib, J. Phys. Condens. Matter 20, 475207 (2008)CrossRefGoogle Scholar
  20. 20.
    A.M. Dimiev, J.M. Tour, ACS Nano 8, 3060 (2014)CrossRefGoogle Scholar
  21. 21.
    T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, I. Dékány, Chem. Mater. 18, 2740 (2006)CrossRefGoogle Scholar
  22. 22.
    Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, J. Am. Chem. Soc. 130, 5856 (2008)CrossRefGoogle Scholar
  23. 23.
    K. Zhou, Y. Zhu, X. Yang, X. Jiang, C. Li, New J. Chem. 35, 353 (2011)CrossRefGoogle Scholar
  24. 24.
    J. Shen, M. Shi, B. Yan, H. Ma, N. Li, M. Ye, Nano Res. 4, 795 (2011)CrossRefGoogle Scholar
  25. 25.
    J. Qiu, G. Wang, C. Zhao, J. Nanoparticle Res. 10, 659 (2008)CrossRefGoogle Scholar
  26. 26.
    C. Vix-Guterl, M. Couzi, J. Dentzer, M. Trinquecoste, P. Delhaes, J. Phys. Chem. B 108, 19361 (2004)CrossRefGoogle Scholar
  27. 27.
    A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)CrossRefGoogle Scholar
  28. 28.
    M. Zhang, M. Yudasaka, A. Koshio, S. Iijima, Chem. Phys. Lett. 364, 420 (2002)CrossRefGoogle Scholar
  29. 29.
    J. Molina, A. Zille, J. Fernández, A.P. Souto, J. Bonastre, F. Cases, Synth. Met. 204, 110 (2015)CrossRefGoogle Scholar
  30. 30.
    M. Kan, J. Zhou, Y. Li, Q. Sun, Appl. Phys. Lett. 100, 173106 (2012)CrossRefGoogle Scholar
  31. 31.
    Y. Ominato, M. Koshino, Phys. Rev. B 85, 165454 (2012)CrossRefGoogle Scholar
  32. 32.
    S. Ma, J.H. Xia, V.V.S.S. Srikanth, X. Sun, T. Staedler, X. Jiang, F. Yang, Z.D. Zhang, Appl. Phys. Lett. 95, 263105 (2009)CrossRefGoogle Scholar
  33. 33.
    N.S.K. Kumar, T.S. Shahid, G. Govindaraj, Phys. B Phys. Condens. Matter 488, 99 (2016)CrossRefGoogle Scholar
  34. 34.
    K.S. Kumar, S. Pittala, S. Sanyadanam, P. Paik, RSC Adv. 5, 14768 (2015)CrossRefGoogle Scholar
  35. 35.
    G. Lazar, K. Zellama, M. Clin, C. Godet, Appl. Phys. Lett. 85, 6176 (2004)CrossRefGoogle Scholar
  36. 36.
    L. Zhang, Z.-J. Tang, Phys. Rev. B 70, 174306 (2004)CrossRefGoogle Scholar
  37. 37.
    M. Aggarwal, S. Khan, M. Husain, T.C. Ming, M.Y. Tsai, T.P. Perng, Z.H. Khan, Eur. Phys. J. B 60, 319 (2007)CrossRefGoogle Scholar
  38. 38.
    B. Muchharla, T.N. Narayanan, K. Balakrishnan, P.M. Ajayan, S. Talapatra, 2D Mater. 1, 11008 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rajesh Cheruku
    • 1
    • 2
  • D. Surya Bhaskaram
    • 1
  • G. Govindaraj
    • 1
  1. 1.Department of Physics, School of Physical, Chemical and Applied SciencesPondicherry UniversityKalapetIndia
  2. 2.School of Chemical EngineeringYeungnam UniversityGyeongsan-siSouth Korea

Personalised recommendations