Enhanced photoelectrochemical activity of electrochemically deposited ZnO nanorods for water splitting reaction

Article
  • 35 Downloads

Abstract

This paper reports the development of zinc oxide films electrodeposited at different potentials on tin-doped indium oxide substrates. The effect of deposition potential on ZnO microstructure, optical absorption, and photocatalytic activity for water splitting reaction were studied in detail. The films were potentiodynamically grown by applying different deposition potentials, such as − 0.7, − 0.8, and − 0.9 V at constant temperature (70 °C) for 30 min. The pH of precursor solution was maintained around 6 during the electrodeposition process. X-ray diffraction study revealed the hexagonal wurtzite crystal structure of the ZnO. The field emission scanning electron microscopy (FESEM) demonstrated a significant variation in the microstructure with changing deposition potential. UV–Visible spectroscopy demonstrated a significant change in the optical band gap values for the ZnO films deposited at different deposition potentials. The highest photocatalytic activity of water splitting was recorded for the films deposited at − 0.8 V under AM. 1.5 G solar light illumination.

Notes

Acknowledgements

The authors acknowledge the financial support of the Scientific and Technological Research Council of Turkey under (TUBITAK- BİDEB) 2211- National Ph.D. Fellowship Programme and Scientific Research Project of Cukurova University (Project No: FDK-2014-3488).

References

  1. 1.
    J. Zhu, D. Yang, Z. Yin, Q. Yan, H. Zhang, Small 10, 3480 (2014).  https://doi.org/10.1002/smll.201303202 CrossRefGoogle Scholar
  2. 2.
    S. Liu, Z.R. Tang, Y. Sun, J.C. Colmenares, Y.J. Xu, Chem. Soc. Rev. 44, 5053 (2015).  https://doi.org/10.1039/c4cs00408f CrossRefGoogle Scholar
  3. 3.
    M. Ball, M. Weeda, Int. J. Hydrog. Energy 40, 7903 (2015).  https://doi.org/10.1016/j.ijhydene.2015.04.032 CrossRefGoogle Scholar
  4. 4.
    H.B. Wu, B.Y. Xia, L. Yu, X.Y. Yu, X.W. Lou, Nat. Commun. 6, 6512 (2015).  https://doi.org/10.1038/ncomms7512 CrossRefGoogle Scholar
  5. 5.
    S. Chen, S.S. Thind, A. Chen, Electrochem. Commun. 63, 10 (2016).  https://doi.org/10.1016/j.elecom.2015.12.003 CrossRefGoogle Scholar
  6. 6.
    A. Eftekhari, V.J. Babu, S. Ramakrishna, Int. J. Hydrog. Energy (2017).  https://doi.org/10.1016/j.ijhydene.2017.03.029 Google Scholar
  7. 7.
    Y.K. Gaudy, S. Haussener, J. Mater. Chem. A 4, 3100 (2016).  https://doi.org/10.1039/c5ta07328f CrossRefGoogle Scholar
  8. 8.
    W. Ren, H. Zhang, C. Cheng, Electrochim. Acta 241, 316 (2017).  https://doi.org/10.1016/j.electacta.2017.04.145 CrossRefGoogle Scholar
  9. 9.
    N. Iqbal, I. Khan, Z.H.A. Yamani, A. Qurashi, Sol. Energy 144, 604 (2017).  https://doi.org/10.1016/j.solener.2017.01.057 CrossRefGoogle Scholar
  10. 10.
    P. Varadhan, H.C. Fu, D. Priante et al., Nano Lett. 17, 1520 (2017).  https://doi.org/10.1021/acs.nanolett.6b04559 CrossRefGoogle Scholar
  11. 11.
    D. Cao, H. Xiao, J. Fang et al., Mater. Res. Express 4, 015019 (2017).  https://doi.org/10.1088/2053-1591/aa56ee CrossRefGoogle Scholar
  12. 12.
    L. Yang, M. Zhang, K. Zhu, J. Lv, G. He, Z. Sun, Appl. Surf. Sci. (2016).  https://doi.org/10.1016/j.apsusc.2016.07.001 Google Scholar
  13. 13.
    S. Banerjee, S.K. Mohapatra, M. Misra, J. Phys. Chem. C 115, 12643 (2011).  https://doi.org/10.1021/jp106879p CrossRefGoogle Scholar
  14. 14.
    N.D. Desai, S.S. Mali, R.M. Mane, V.B. Ghanwat, C.K. Hong, P.N. Bhosale, J. Mater. Sci.: Mater. Electron. 27, 11739 (2016).  https://doi.org/10.1007/s10854-016-5312-9 Google Scholar
  15. 15.
    Z. Liu, Q. Cai, C. Ma, J. Zhang, J. Liu, New J. Chem. (2017).  https://doi.org/10.1039/c7nj01725a Google Scholar
  16. 16.
    P.R. Deshmukh, Y. Sohn, W.G. Shin, J. Alloys Compd. (2017).  https://doi.org/10.1016/j.jallcom.2017.04.030 Google Scholar
  17. 17.
    M.S. Islam, M.F. Hossain, S.M.A. Razzak, J. Photochem. Photobiol. A 326, 100 (2016).  https://doi.org/10.1016/j.jphotochem.2016.04.002 CrossRefGoogle Scholar
  18. 18.
    T.D. Dongale, K.V. Khot, S.S. Mali et al., Mater. Sci. Semicond. Process. 40, 523 (2015).  https://doi.org/10.1016/j.mssp.2015.07.004 CrossRefGoogle Scholar
  19. 19.
    K.V. Khot, S.S. Mali, R.M. Mane et al., J. Mater. Sci.: Mater. Electron. 26, 6897 (2015).  https://doi.org/10.1007/s10854-015-3307-6 Google Scholar
  20. 20.
    A. Mahmood, A. Naeem, InTech (2017).  https://doi.org/10.5772/67857 Google Scholar
  21. 21.
    F. Li, L. Yang, G. Xu et al., J. Alloys Compd. 577, 663 (2013).  https://doi.org/10.1016/j.jallcom.2013.06.147 CrossRefGoogle Scholar
  22. 22.
    S. Agnihotri, G. Bajaj, S. Mukherji, S. Mukherji, Nanoscale 7, 7415 (2015).  https://doi.org/10.1039/c4nr06913g CrossRefGoogle Scholar
  23. 23.
    J. Jean, S. Chang, P.R. Brown et al., Adv. Mater. 25, 2790 (2013).  https://doi.org/10.1002/adma.201204192 CrossRefGoogle Scholar
  24. 24.
    S.H. Chen, C.F. Yu, C.S. Chien, (2017) Microsc Res Tech.  https://doi.org/10.1002/jemt.22848 Google Scholar
  25. 25.
    S.K. Shaikh, S.I. Inamdar, V.V. Ganbavle, K.Y. Rajpure, J. Alloys Compd. 664, 242 (2016).  https://doi.org/10.1016/j.jallcom.2015.12.226 CrossRefGoogle Scholar
  26. 26.
    V.K. Kaushik, C. Mukherjee, T. Ganguli, P.K. Sen, J. Alloys Compd. 689, 1028 (2016).  https://doi.org/10.1016/j.jallcom.2016.08.022 CrossRefGoogle Scholar
  27. 27.
    R. Rayathulhan, B.K. Sodipo, AA Aziz, Ultrason. Sonochem. 35, 270 (2017).  https://doi.org/10.1016/j.ultsonch.2016.10.002 CrossRefGoogle Scholar
  28. 28.
    G. Zhu, Y. Shen, K. Xu et al., J. Alloys Compd. 689, 192 (2016).  https://doi.org/10.1016/j.jallcom.2016.07.182 CrossRefGoogle Scholar
  29. 29.
    S. Sampath, M. Shestakova, P. Maydannik et al., RSC Adv. 6, 25173 (2016).  https://doi.org/10.1039/c6ra01655c CrossRefGoogle Scholar
  30. 30.
    J. Laube, D. Nübling, H. Beh, S. Gutsch, D. Hiller, M. Zacharias, Thin Solid Films 603, 377 (2016).  https://doi.org/10.1016/j.tsf.2016.02.060 CrossRefGoogle Scholar
  31. 31.
    K.G. Girija, K. Somasundaram, A. Topkar, R.K. Vatsa, J. Alloys Compd. 684, 15 (2016).  https://doi.org/10.1016/j.jallcom.2016.05.125 CrossRefGoogle Scholar
  32. 32.
    N. Kıcır, T. Tüken, O. Erken, C. Gumus, Y. Ufuktepe, Appl. Surf. Sci. 377, 191 (2016).  https://doi.org/10.1016/j.apsusc.2016.03.111 CrossRefGoogle Scholar
  33. 33.
    W. Riedel, Y. Tang, W. Ohm, J. Chen, M.C. Lux-Steiner, S. Gledhill, Thin Solid Films 574, 177 (2015).  https://doi.org/10.1016/j.tsf.2014.12.006 CrossRefGoogle Scholar
  34. 34.
    J.K. Liang, H.L. Su, C.L. Kuo et al., Electrochim. Acta 125, 124 (2014).  https://doi.org/10.1016/j.electacta.2014.01.029 CrossRefGoogle Scholar
  35. 35.
    F. Xu, Y. Lu, Y. Xie, Y. Liu, Mater. Des. 30, 1704 (2009).  https://doi.org/10.1016/j.matdes.2008.07.024 CrossRefGoogle Scholar
  36. 36.
    L. Xu, Y. Guo, Q. Liao, J. Zhang, D. Xu, J. Phys. Chem. B 109, 13519 (2005)CrossRefGoogle Scholar
  37. 37.
    R. Tena-Zaera, J. Elias, G. Wang, C. Lévy-Clément, J. Phys. Chem. C 111, 16706 (2007)CrossRefGoogle Scholar
  38. 38.
    L. Vayssieres, K. Keis, S.E. Lindquist, A. Hagfeldt, J. Phys. Chem. B 105, 3350 (2001).  https://doi.org/10.1021/jp010026s CrossRefGoogle Scholar
  39. 39.
    A. Mahmood, F. Tezcan, G. Kardaş, Int. J. Hydrog. Energy (2017).  https://doi.org/10.1016/j.ijhydene.2017.06.003 Google Scholar
  40. 40.
    H. Li, Y. Fu, H. Liu et al., Inorg. Chem. Commun. 30, 182 (2013).  https://doi.org/10.1016/j.inoche.2012.11.029 CrossRefGoogle Scholar
  41. 41.
    P. Paufler, Cryst. Res. Technol. 16, 982 (1981)Google Scholar
  42. 42.
    F. Xu, Y. Lu, Y. Xie, Y. Liu, J. Solid State Electrochem. 14, 63 (2009).  https://doi.org/10.1007/s10008-009-0785-6 CrossRefGoogle Scholar
  43. 43.
    V. Kumar, N. Singh, R.M. Mehra, A. Kapoor, L.P. Purohit, H.C. Swart, Thin Solid Films 539, 161 (2013).  https://doi.org/10.1016/j.tsf.2013.05.088 CrossRefGoogle Scholar
  44. 44.
    S. Xie, X. Lu, T. Zhai et al., J. Mater. Chem. 22, 14272 (2012)CrossRefGoogle Scholar
  45. 45.
    Z. Han, L. Liao, Y. Wu, H. Pan, S. Shen, J. Chen, J. Hazard. Mater. 217, 100 (2012)CrossRefGoogle Scholar
  46. 46.
    Y. Zheng, C. Chen, Y. Zhan et al., Inorg. Chem. 46, 6675 (2007)CrossRefGoogle Scholar
  47. 47.
    A.B. Djurišić, Y.H. Leung, Small 2: 944 (2006)CrossRefGoogle Scholar
  48. 48.
    P.C. Patel, S. Ghosh, P.C. Srivastava, Mater. Res. Bull. 81, 85 (2016).  https://doi.org/10.1016/j.materresbull.2016.05.005 CrossRefGoogle Scholar
  49. 49.
    Y.F. Gao, M. Nagai, Y. Masuda, F. Sato, K. Koumoto, J. Cryst. Growth 286, 445 (2006).  https://doi.org/10.1016/j.jcrysgro.2005.10.072 CrossRefGoogle Scholar
  50. 50.
    S. Srinivasan, Fuel Cells From Fundamentals To Applications (Springer, New York, 2006)Google Scholar
  51. 51.
    H. Gerischer, Solar Energy Conversion (Springer, Berlin, 1979), p. 115CrossRefGoogle Scholar
  52. 52.
    M. Radecka, M. Rekas, A. Trenczek-Zajac, K. Zakrzewska, J. Power Sources 181, 46 (2008).  https://doi.org/10.1016/j.jpowsour.2007.10.082 CrossRefGoogle Scholar
  53. 53.
    K. Gelderman, L. Lee, S.W. Donne, J. Chem. Educ. 84, 685 (2007)CrossRefGoogle Scholar
  54. 54.
    K.S. Ahn, S. Shet, T. Deutsch et al., J. Power Sources 176, 387 (2008).  https://doi.org/10.1016/j.jpowsour.2007.10.034 CrossRefGoogle Scholar
  55. 55.
    V. Ischenko, S. Polarz, D. Grote, V. Stavarache, K. Fink, M. Driess, Adv. Funct. Mater. 15, 1945 (2005)CrossRefGoogle Scholar
  56. 56.
    Z. Chen, T.F. Jaramillo, T.G. Deutsch et al., J. Mater. Res. 25, 3 (2011).  https://doi.org/10.1557/jmr.2010.0020 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemistry Department, Science and Letters FacultyҪukurova UniversityAdanaTurkey

Personalised recommendations