Properties of sol gel synthesized ZnO nanoparticles

  • B. Manikandan
  • Tamio Endo
  • Satoru Kaneko
  • K. R. Murali
  • Rita John
Article
  • 69 Downloads

Abstract

In this work, zinc oxide (ZnO) nanoparticles were synthesized by the sol gel method using zinc acetate as precursor. The synthesized powder was characterized by X-ray diffraction, Fourier transform infrared Spectroscopy (FTIR), Raman, UV–Visible spectroscopy, field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDAX), impedance analysis and photocatalysis activity studies. X-ray diffraction studies indicate that ZnO nanoparticles have single phase with wurtzite hexagonal structure. The lattice parameters were estimated using Scherrer formula. Micro strain, stress, energy density and crystallite size were analysed using Williamson–Hall model. The FTIR spectrum showed the characteristics absorption peak of ZnO at 458.82 cm−1 and authenticates the presence of ZnO nanoparticles. The FE-SEM characterization shows flake like morphology and the presence of chemical element composition is identified in the EDAX analysis. The optical band gap was found to be 3.1 eV. The presence of Zn–O stretching mode was confirmed from Raman spectrum. The electrical properties such as dielectric constant, dielectric loss, and ac conductivity were analyzed from impedance data. The prepared ZnO nanoparticles show good photocatalytic behaviour for methylene blue dye and the rate constant was calculated as 0.0296 min−1.

Notes

Acknowledgements

The author B. Manikandan thank University Grants Commission, India for the financial support through UGC-RGNFD (University Grants Commission-Rajiv Gandhi National Fellowship for student with Disabilities) - Award letter No: F./2013-14/RGNF-2013-14D-OBC-TAM-56670; Dt: 30-10-2013).

References

  1. 1.
    C. Tian, Q. Zhang, A. Wu, M. Jiang, Z. Liang, B. Jiang, H. Fu, Chem. Commun. 48, 2858–2860 (2012)CrossRefGoogle Scholar
  2. 2.
    J. Ungula, B.F. Dejene, Physica B 480, 26–30 (2016)CrossRefGoogle Scholar
  3. 3.
    H.R. Ghorbani, Orient. J. Chem. 31(2), 1219–1221 (2015)CrossRefGoogle Scholar
  4. 4.
    S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Int. Nano Lett. 3, 30 (2013)CrossRefGoogle Scholar
  5. 5.
    S.S. Kulkarni, M.D. Shirsat, Int. J. Adv. Res. Phys. Sci. 2, 14–18 (2015)Google Scholar
  6. 6.
    G. Amin, M.H. Asif, A. Zainelabdin, S. Zaman, O. Nur, M. Willander, J. Nanomater. 2011, 5 (2011)CrossRefGoogle Scholar
  7. 7.
    A. Vanaja, G.V. Ramaraju, K.S. Rao, Int. J. Techno Chem. Res. 2(2), 110–120 (2016)Google Scholar
  8. 8.
    K. Swaroop, H.M. Somashekarappa, Res. J. Recent Sci. 4(ISC-2014), 197–201 (2015)Google Scholar
  9. 9.
    K.G. Chandrappa, T.V. Venkatesha, Nano-Micro Lett. 4(1), 14–24 (2012)CrossRefGoogle Scholar
  10. 10.
    Y.T. Prabhu, K.V. Rao, V.S.S. Kumar, B.S. Kumari, World J. Nano Sci. Eng. 4, 21–28 (2014)CrossRefGoogle Scholar
  11. 11.
    A. Vanaja, G.V. Ramaraju, K.S. Rao, Indian J. Sci. Technol. 9(12), 87013 (2016)CrossRefGoogle Scholar
  12. 12.
    S. Anitha, S. Muthukumaran, J. Mater. Sci. 28, 12995–13005 (2017)Google Scholar
  13. 13.
    A.K. Kalita, S. Karmakar, Int. J. Innov. Res. Sci. Eng. Technol. 6, 4 (2017)Google Scholar
  14. 14.
    P. Bindu, S. Thomas, J. Theoret. Appl. Phys. 8, 123–134 (2014)CrossRefGoogle Scholar
  15. 15.
    N. Abraham, A. Rufus, C. Unni, D. Philip, J. Mater. Sci. 28, 16527–16539 (2017)Google Scholar
  16. 16.
    H. Kumar, R. Rani, Int. Lett. Chem. Phys. Astron 14, 26–36 (2013)CrossRefGoogle Scholar
  17. 17.
    S.S. Alias, A.B. Ismail, A.A. Mohamad, J. Alloys Compd. 499, 231–237 (2010)CrossRefGoogle Scholar
  18. 18.
    S. Kant, A. Kumar, Adv. Mater. Lett. 3(4), 350–354 (2012)CrossRefGoogle Scholar
  19. 19.
    N. Akcay, G. Algun, N.U. Kılıc, S. Shawuti, M.M. Can, J. Mater. Sci. 28, 4492–4497 (2017)Google Scholar
  20. 20.
    K. Omri, I. Najeh, R. Dhahri, J. El Ghoul, L. El Mir, Microelectron. Eng. 128, 53–58 (2014)CrossRefGoogle Scholar
  21. 21.
    A.K. Ojha, M. Srivastava, S. Kumar, R. Hassanein, J. Singh, M.K. Singh, A. Materny, Vib. Spectrosc. 72, 90–96 (2014)CrossRefGoogle Scholar
  22. 22.
    R.P. Wang, G. Xu, P. Jin, Phys. Rev. B 69, 113303 (2004)CrossRefGoogle Scholar
  23. 23.
    H.C. Choi, Y.M. Jung, S.B. Kim, Vib. Spectrosc. 37, 33–38 (2005)CrossRefGoogle Scholar
  24. 24.
    M. Mujahid, Bull. Mater. Sci. 38, 995–1001 (2015)CrossRefGoogle Scholar
  25. 25.
    N. Kılınç, L. Arda, S. Öztürk, Z.Z. Öztürk, Cryst. Res. Technol. 45, 529–538 (2010)CrossRefGoogle Scholar
  26. 26.
    Y. Cherifi, A. Chaouchi, Y. Lorgoilloux, M. Rguiti, A. Kadri, C. Courtois, Process. Appl. Ceram. 10(3), 125–135 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Choudhary, R.J. Sengwa, Adv. Mater. Proc. 2(5), 315–324 (2017)CrossRefGoogle Scholar
  28. 28.
    M.M. Hassan, A.S. Ahmed, M. Chaman, W. Khan, A.H. Naqvi, A. Azam, Mater. Res. Bull. 47, 3952–3958 (2012)CrossRefGoogle Scholar
  29. 29.
    A.B. Lavand, Y.S. Malghe, J. Asian Ceram. Soc. 3, 305–310 (2015)CrossRefGoogle Scholar
  30. 30.
    H.S. Aliyu, A.H. Abdullah, Z. Abbas, Int. J. Multi. Res. Dev. 2(3), 612–615 (2015)Google Scholar
  31. 31.
    S.S.M. Hassan, W.I.M. El Azab, H.R. Ali, M.S.M. Mansour, Adv. Nat. Sci. 6, 045012 (2015)Google Scholar
  32. 32.
    K.P. Raj, K. Sadaiyandi, A. Kennedy, S. Sagadevan, J. Mater. Sci. (2017).  https://doi.org/10.1007/s10854-017-7857-7 Google Scholar
  33. 33.
    A. Phuruangrat, O. Yayapao, S. Thongtem, T. Thongtem, Russ. J. Phys. Chem. A 90(5), 949–954 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsUniversity of MadrasChennaiIndia
  2. 2.Sagamihara Surface LaboratorySagamiharaJapan
  3. 3.Kanagawa Institute of Industrial Science and TechnologyEbinaJapan
  4. 4.Electrochemical Material Science DivisionCSIR- Central Electrochemical Research InstituteKaraikudiIndia

Personalised recommendations