Properties of sol gel synthesized ZnO nanoparticles
- 69 Downloads
Abstract
In this work, zinc oxide (ZnO) nanoparticles were synthesized by the sol gel method using zinc acetate as precursor. The synthesized powder was characterized by X-ray diffraction, Fourier transform infrared Spectroscopy (FTIR), Raman, UV–Visible spectroscopy, field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDAX), impedance analysis and photocatalysis activity studies. X-ray diffraction studies indicate that ZnO nanoparticles have single phase with wurtzite hexagonal structure. The lattice parameters were estimated using Scherrer formula. Micro strain, stress, energy density and crystallite size were analysed using Williamson–Hall model. The FTIR spectrum showed the characteristics absorption peak of ZnO at 458.82 cm−1 and authenticates the presence of ZnO nanoparticles. The FE-SEM characterization shows flake like morphology and the presence of chemical element composition is identified in the EDAX analysis. The optical band gap was found to be 3.1 eV. The presence of Zn–O stretching mode was confirmed from Raman spectrum. The electrical properties such as dielectric constant, dielectric loss, and ac conductivity were analyzed from impedance data. The prepared ZnO nanoparticles show good photocatalytic behaviour for methylene blue dye and the rate constant was calculated as 0.0296 min−1.
Notes
Acknowledgements
The author B. Manikandan thank University Grants Commission, India for the financial support through UGC-RGNFD (University Grants Commission-Rajiv Gandhi National Fellowship for student with Disabilities) - Award letter No: F./2013-14/RGNF-2013-14D-OBC-TAM-56670; Dt: 30-10-2013).
References
- 1.C. Tian, Q. Zhang, A. Wu, M. Jiang, Z. Liang, B. Jiang, H. Fu, Chem. Commun. 48, 2858–2860 (2012)CrossRefGoogle Scholar
- 2.J. Ungula, B.F. Dejene, Physica B 480, 26–30 (2016)CrossRefGoogle Scholar
- 3.H.R. Ghorbani, Orient. J. Chem. 31(2), 1219–1221 (2015)CrossRefGoogle Scholar
- 4.S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Int. Nano Lett. 3, 30 (2013)CrossRefGoogle Scholar
- 5.S.S. Kulkarni, M.D. Shirsat, Int. J. Adv. Res. Phys. Sci. 2, 14–18 (2015)Google Scholar
- 6.G. Amin, M.H. Asif, A. Zainelabdin, S. Zaman, O. Nur, M. Willander, J. Nanomater. 2011, 5 (2011)CrossRefGoogle Scholar
- 7.A. Vanaja, G.V. Ramaraju, K.S. Rao, Int. J. Techno Chem. Res. 2(2), 110–120 (2016)Google Scholar
- 8.K. Swaroop, H.M. Somashekarappa, Res. J. Recent Sci. 4(ISC-2014), 197–201 (2015)Google Scholar
- 9.K.G. Chandrappa, T.V. Venkatesha, Nano-Micro Lett. 4(1), 14–24 (2012)CrossRefGoogle Scholar
- 10.Y.T. Prabhu, K.V. Rao, V.S.S. Kumar, B.S. Kumari, World J. Nano Sci. Eng. 4, 21–28 (2014)CrossRefGoogle Scholar
- 11.A. Vanaja, G.V. Ramaraju, K.S. Rao, Indian J. Sci. Technol. 9(12), 87013 (2016)CrossRefGoogle Scholar
- 12.S. Anitha, S. Muthukumaran, J. Mater. Sci. 28, 12995–13005 (2017)Google Scholar
- 13.A.K. Kalita, S. Karmakar, Int. J. Innov. Res. Sci. Eng. Technol. 6, 4 (2017)Google Scholar
- 14.P. Bindu, S. Thomas, J. Theoret. Appl. Phys. 8, 123–134 (2014)CrossRefGoogle Scholar
- 15.N. Abraham, A. Rufus, C. Unni, D. Philip, J. Mater. Sci. 28, 16527–16539 (2017)Google Scholar
- 16.H. Kumar, R. Rani, Int. Lett. Chem. Phys. Astron 14, 26–36 (2013)CrossRefGoogle Scholar
- 17.S.S. Alias, A.B. Ismail, A.A. Mohamad, J. Alloys Compd. 499, 231–237 (2010)CrossRefGoogle Scholar
- 18.S. Kant, A. Kumar, Adv. Mater. Lett. 3(4), 350–354 (2012)CrossRefGoogle Scholar
- 19.N. Akcay, G. Algun, N.U. Kılıc, S. Shawuti, M.M. Can, J. Mater. Sci. 28, 4492–4497 (2017)Google Scholar
- 20.K. Omri, I. Najeh, R. Dhahri, J. El Ghoul, L. El Mir, Microelectron. Eng. 128, 53–58 (2014)CrossRefGoogle Scholar
- 21.A.K. Ojha, M. Srivastava, S. Kumar, R. Hassanein, J. Singh, M.K. Singh, A. Materny, Vib. Spectrosc. 72, 90–96 (2014)CrossRefGoogle Scholar
- 22.R.P. Wang, G. Xu, P. Jin, Phys. Rev. B 69, 113303 (2004)CrossRefGoogle Scholar
- 23.H.C. Choi, Y.M. Jung, S.B. Kim, Vib. Spectrosc. 37, 33–38 (2005)CrossRefGoogle Scholar
- 24.M. Mujahid, Bull. Mater. Sci. 38, 995–1001 (2015)CrossRefGoogle Scholar
- 25.N. Kılınç, L. Arda, S. Öztürk, Z.Z. Öztürk, Cryst. Res. Technol. 45, 529–538 (2010)CrossRefGoogle Scholar
- 26.Y. Cherifi, A. Chaouchi, Y. Lorgoilloux, M. Rguiti, A. Kadri, C. Courtois, Process. Appl. Ceram. 10(3), 125–135 (2016)CrossRefGoogle Scholar
- 27.S. Choudhary, R.J. Sengwa, Adv. Mater. Proc. 2(5), 315–324 (2017)CrossRefGoogle Scholar
- 28.M.M. Hassan, A.S. Ahmed, M. Chaman, W. Khan, A.H. Naqvi, A. Azam, Mater. Res. Bull. 47, 3952–3958 (2012)CrossRefGoogle Scholar
- 29.A.B. Lavand, Y.S. Malghe, J. Asian Ceram. Soc. 3, 305–310 (2015)CrossRefGoogle Scholar
- 30.H.S. Aliyu, A.H. Abdullah, Z. Abbas, Int. J. Multi. Res. Dev. 2(3), 612–615 (2015)Google Scholar
- 31.S.S.M. Hassan, W.I.M. El Azab, H.R. Ali, M.S.M. Mansour, Adv. Nat. Sci. 6, 045012 (2015)Google Scholar
- 32.K.P. Raj, K. Sadaiyandi, A. Kennedy, S. Sagadevan, J. Mater. Sci. (2017). https://doi.org/10.1007/s10854-017-7857-7 Google Scholar
- 33.A. Phuruangrat, O. Yayapao, S. Thongtem, T. Thongtem, Russ. J. Phys. Chem. A 90(5), 949–954 (2016)CrossRefGoogle Scholar