Advertisement

Humidity sensing potential of Fe2TiO5—pseudobrookite

  • M. V. Nikolic
  • M. D. Lukovic
  • Z. Z. Vasiljevic
  • N. J. Labus
  • O. S. Aleksic
Article
  • 74 Downloads

Abstract

Bulk samples of pseudobrookite with an orthorhombic crystal structure were prepared by sintering a mixture of starting hematite and anatase nano powders in the weight ratio 60:40 at three different sintering temperatures (950, 1050 and 1150 °C) resulting in different microstructures determined by SEM analysis. Humidity sensing properties of pseudobrookite were investigated by measuring changes in electrical properties at operating temperatures of 20, 40 and 60 °C in the frequency range 100 Hz–100 kHz in the relative humidity range 30–90% in a climatic chamber. At 100 Hz, and 20 °C the impedance of pseudobrookite sintered at 1150 °C reduced over 5 times in the humidity range 40–90%, and 7 times at 60 °C for pseudobrookite sintered at 950 °C. Detailed analysis of dielectric properties showed that the dielectric constant increased noticeably with increase in humidity at low frequencies. Electrical conductivity change with frequency followed the Jonscher power law, and increased with increase in relative humidity. The determined frequency constant reduced with increase in sample temperature and increase in relative humidity. The conduction mechanism can be explained using the correlated barrier hopping model. Analysis of complex impedance using an equivalent circuit showed the dominant influence of grain boundaries. Low hysteresis (3.6 and 2.99%) was obtained in the 40–90% humidity range at room temperature (25 °C) for pseudobrookite sintered at 950 and 1150 °C.

Notes

Acknowledgements

This work was performed as part of Project III45007 financed by the Ministry for Education, Science and Technological Development of the Republic of Serbia.

References

  1. 1.
    T.A. Blank, L.P. Eksperiandova, K.N. Belikov, Sens. Actuators B 228, 416 (2016)CrossRefGoogle Scholar
  2. 2.
    H. Faharani, W. Wagiran, M.N. Hamida, Sensors 14, 7881 (2014)CrossRefGoogle Scholar
  3. 3.
    A. Mirzaei, B. Hashemi, K. Janghorban, J. Mater. Sci.: Mater. Electron. 27, 3109 (2016)Google Scholar
  4. 4.
    A. Sutka, K.A. Gross, Sens. Actuators B 222, 95 (2016)CrossRefGoogle Scholar
  5. 5.
    V. Jeseenthrani, M. George, B. Jeyaraj, A. Dayalan, K.S. Nagaraja, J. Exp. Nanosci. 8, 358 (2013)CrossRefGoogle Scholar
  6. 6.
    K. Arshaka, K. Twomey, D. Egan, Sensors 2, 50 (2002)CrossRefGoogle Scholar
  7. 7.
    A. Cavalieri, T. Caronna, I. Natali Sorra, J.M. Tulliani, Ceram. Int. 38, 2865 (2012)CrossRefGoogle Scholar
  8. 8.
    A.E. Mahmoud, G. Viola, A.S. Afify, A.M. Babeer, M. Ferraris, J. Porous. Mater.  https://doi.org/10.1007/s10934-016-0315-8
  9. 9.
    A. Tripathy, S. Pramqanik, A. Manna, S. Bhuyan, N.F.A. Shah, Z. Radzi, N.A.A. Osman, Sensors 16, 1135 (2016)CrossRefGoogle Scholar
  10. 10.
    J. Shah, R.K. Kotnala, B. Singh, H. Kishnan, Sens. Actuators B 128, 306 (2007)CrossRefGoogle Scholar
  11. 11.
    M.R. Mohammadi, D.J. Fray, Physica E 46, 43 (2012)CrossRefGoogle Scholar
  12. 12.
    P.M. Faia, J. Libardi, Sens. Actuators B 236, 682 (2016)CrossRefGoogle Scholar
  13. 13.
    M. Sabarilakshmi, K. Janaki, J. Mater. Sci.: Mater. Electron. 28, 8101 (2017)Google Scholar
  14. 14.
    P. Rao, R.C. Chikate, S. Bhagwat, New J. Chem. 40, 1720 (2016)CrossRefGoogle Scholar
  15. 15.
    J.M. Tulliani, C. Baroni, L. Zavattaro, C. Grignani, Sensors 13, 12070 (2013)CrossRefGoogle Scholar
  16. 16.
    J.M. Tulliani, P. Bonville, Ceram. Int. 31, 507 (2005)CrossRefGoogle Scholar
  17. 17.
    G. Neri, A. Bonavita, S. Galvagno, N. Donato, A. Caddemi, Sens. Actuators B 111–112, 71 (2005)CrossRefGoogle Scholar
  18. 18.
    Q. Liu, J. He, T. Yao, Z. Sun, W. Cheng, S. He, Y. Xie, Y. Peng, H. Cheng, Y. Sun, Y. Jiang, F. Hu, Z. Xie, W. Yan, Z. Pan, Z. Wu, S. Wei, Nat. Commun. 5, 5122 (2014)CrossRefGoogle Scholar
  19. 19.
    Z.Z. Djuric, O.S. Aleksic, M.V. Nikolic, N. Labus, M. Radovanovic, M.D. Lukovic, Ceram. Int. 40, 15131 (2014)CrossRefGoogle Scholar
  20. 20.
    R. Yu, Z. Li, D. Wang, X. Lai, C. Xing, M. Yang, X. Xing, Scripta Mater. 63, 155 (2010)CrossRefGoogle Scholar
  21. 21.
    G. Miskovic, M.D. Lukovic, M.V. Nikolic, Z.Z. Vasiljevic, J. Nicolics, O.S. Aleksic, Analysis of electronic properties of pseudobrookite thick films with possible application for NO gas sensing, Proceedings of the 39th International Spring Seminar on Electronics Technology (ISSE), 18–22 May, 2016,  https://doi.org/10.1109/ISSE.2016.7563226
  22. 22.
    S.N. Patil, A.M. Pawar, S.K. Tilekar, B.P. Ladgaonkar, Sens. Actuators A 244, 35 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Egashira, M. Nakashima, S. Kawasumi, T. Selyama, J. Phys. Chem. 85, 4125 (1981)CrossRefGoogle Scholar
  24. 24.
    N. Agmon, Chem. Phys. Lett. 244, 456 (1995)CrossRefGoogle Scholar
  25. 25.
    K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1271 (2011)CrossRefGoogle Scholar
  26. 26.
    M.V. Nikolic, D.L. Sekulic, Z.Z. Vasiljevic, M.D. Lukovic, V.B. Pavlovic, O.S. Aleksic, J. Mater. Sci.: Mater. Electron. 28, 4796 (2017)Google Scholar
  27. 27.
    M.M. Ahmad, S.A. Makhlouf, K.M.S. Khalil, J. Appl. Phys. 100, 094323 (2006)CrossRefGoogle Scholar
  28. 28.
    A.K. Jonscher, Nature 267, 673 (1977)CrossRefGoogle Scholar
  29. 29.
    S. Sharma, T. Basu, A. Shahee, K. Singh, N.P. Lalla, J. Alloys Compd. 663, 289 (2016)CrossRefGoogle Scholar
  30. 30.
    H. Agarwal, T.P. Yadav, O.N. Srivastava, M.A. Shaz, Ceram. Int. 43, 16986 (2017)CrossRefGoogle Scholar
  31. 31.
    M.M. El-Nahass, A.A. Attia, G.F. Salem, H.A.M. Ali, M.I. Ispail, Physica B 434, 89 (2014)CrossRefGoogle Scholar
  32. 32.
    E.V. Gopalan, K.A. Mallini, S. Sagar, D.S. Kumar, Y. Yoshida, I.A. Al-Omari, M.R. Anantharaman, J. Phys. D 42, 165005 (2009)CrossRefGoogle Scholar
  33. 33.
    G. Garcia-Belmonde, V. Kytin, T. Dittrich, J. Bisquert, J. Appl. Phys. 94, 5261 (2003)CrossRefGoogle Scholar
  34. 34.
    K.-S. Chou, T.-K. Lee, F.-J. Liu, Sens. Actuators B 56, 106 (1999)CrossRefGoogle Scholar
  35. 35.
    A.S. Bondarenko, G. Ragoisha, EIS Spectrum Analyzer, http://www.abc.chemistry.bsu.by
  36. 36.
    A. Sutka, G. Mezinkis, A. Lusis, D. Jakovlevs, Sens. Actuators B 171–172, 204 (2012)CrossRefGoogle Scholar
  37. 37.
    R.B. Kamble, V.I. Mathe, Sens. Actuators B 131, 205 (2008)CrossRefGoogle Scholar
  38. 38.
    M. Li, X.I. Chen, D.F. Zhang, W.Y. Wang, W.J. Wang, Sens. Actuators B 147, 447 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia
  2. 2.Institute of Technical Sciences of the Serbian Academy of Sciences and ArtsBelgradeSerbia

Personalised recommendations