Selenization of CIS and CIGS layers deposited by chemical spray pyrolysis

Article
  • 17 Downloads

Abstract

Cu(In1 − xGa x )Se2 (CIGS) thin films with x = 0 (CIS) and x = 0.3 (CIGS) were prepared on Mo-coated glass substrate by using chemical spray pyrolysis at a substrate temperature of 350 °C, followed by selenization treatment at 550 °C in selenium environment under N2 gas flow. X-ray diffraction patterns of as-deposited CIGS layers on Mo showed polycrystalline chalcopyrite phase with an intense (112) plane. Splitting of (204)/(220) and (116)/(312) planes for the film with x = 0.3 reveals deviation of tetragonal nature. Field emission scanning electron microscopy cross-sectional images of selenized films showed clear re-crystallization of grains. During the selenization process of the CIGS absorber, a thin interface layer of MoSe2 is formed. Line mapping of Mo/CIGS layer showed more gallium segregation at the interface of back contact resulting in band gap grading. Chemical composition and mapping of the as-deposited and selenized samples were determined by energy dispersive analysis of X-rays. This work leads to fabrication of low cost and large scale Mo/CIGS/CdS/ZnO/ZnO:Al device structure.

Notes

Acknowledgements

Authors wish to thank Adolfo Tavira Fuentes (XRD measurements), Norma Iris (thermal evaporation of Ag), Miguel Galván A (Electrical measurements) from Department of solid state electronics of Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) for their technical assistance. Our special thanks to Dr. Orlando Zelaya from Department of Physics of CINVESTAV-IPN for providing tubular furnace facilities. B. J. Babu is thankful to Consejo Nacional de Ciencia y Tecnologia (CONACyT) for their continuous financial support to pursue Ph. D in Mexico and for providing Beca-Mixta scholarship to do 3 months project work at Colorado School of Mines.

References

  1. 1.
    H.W. Schock, R. Noufi, Prog. Photovolt. 8, 151 (2000)CrossRefGoogle Scholar
  2. 2.
    S. Paetel, Roadmap CIGS towards 25% efficiency; IW-CIGS Tech7, 7th International Workshop on CIGS Solar Cell Technology, Munich (2016)Google Scholar
  3. 3.
    M. Kaelin, D. Rudmann, A.N. Tiwari, Sol. Energy 77, 749 (2004)CrossRefGoogle Scholar
  4. 4.
    G. Brown, P. Stone, J. Woodruff, B. Cardozo, D. Jackrel, Proceedings of the 38th IEEE Photovolt. Specialists Conference, Austin, USA, 3280 (2012)Google Scholar
  5. 5.
    S. Aksu, P. Shirish, A. Kleiman-Shwarsetein, S. Kundu, M. Pinarbasi, Proceedings of the 38th IEEE Photovolt. Specialists Conference, Austin, USA, 3092 (2012)Google Scholar
  6. 6.
    R.N. Bhattacharya, Sol. Energy Mater. Sol. Cells 113, 96 (2013)CrossRefGoogle Scholar
  7. 7.
    T.K. Todorov, O. Gunawan, T. Gokmen, D.B. Mitzi, Prog. Photovolt. Res. Appl. 21, 82 (2013)CrossRefGoogle Scholar
  8. 8.
    P. Rajaram, R. Thangaraj, A.K. Sharma, O.P. Agnihotri, Sol. Cells 14, 123 (1985)CrossRefGoogle Scholar
  9. 9.
    M.S. Tomar, F.J. Garcia, Thin Solid Films 90, 419 (1982)CrossRefGoogle Scholar
  10. 10.
    T.T. John, M. Mathew, C. Sudha Kartha, K.P. Vijayakumar, T. Abe, Y. Kashiwab, Sol. Energy Mater. Sol. Cells 89, 27 (2005)CrossRefGoogle Scholar
  11. 11.
    W. Liu, D. Mitzi, US patent 7838403B1 (2010)Google Scholar
  12. 12.
    D.Y. Lee, S.J. Park, J.H. Kim, Curr. Appl. Phys. 11, S88 (2011)CrossRefGoogle Scholar
  13. 13.
    B.J. Babu, S. Velumani, A. Kassiba, R. Asomoza, J.A. Chavez-Carvayar, J. Yi, Mater. Chem. Phys. 162, 59 (2015)CrossRefGoogle Scholar
  14. 14.
    B.J. Babu, S. Velumani, B.J. Simonds, R.K. Ahrenkiel, A. Kassiba, R. Asomoza, Mater. Sci. Semicond. Process. 37, 37–45 (2015)CrossRefGoogle Scholar
  15. 15.
    B.J. Babu, S. Velumani, A. Morales-Acevedo, R. Asomoza, Proceedings of the 7th International Conference on Electrical Engineering Computing Science and Automatic Control, Tuxtla Gutierrez, Mexico, 582 (2010)Google Scholar
  16. 16.
    B.J. Babu, S. Velumani, R. Asomoza, Proceedings of the 37th IEEE Photovolt. Specialists Conference, seattle, USA, 1238 (2011)Google Scholar
  17. 17.
    M. Kaelin, D. Rudmann, F. Kurdesau, T. Meyer, H. Zogg, A.N. Tiwari, Thin Solid Films, 431–432, 58 (2003)CrossRefGoogle Scholar
  18. 18.
    K. Ramanathan, F.S. Hasoon, S. Smith, D.L. Young, M.A. Contreras, P.K. Johnson, A.O. Pudov, J.R. Sites, J. Phys. Chem. Solids 64(9–10), 1495–1498 (2003)CrossRefGoogle Scholar
  19. 19.
    J.H. Scofield, A. Duda, D. Albin, B.L. Ballard, P.K. Predecki, Thin Solid Films 260(1), 26–31 (1995)CrossRefGoogle Scholar
  20. 20.
    K.T. Ramakrishna Reddy, R.B.V. Chalapathy, Cryst. Res. Technol. 34(1), 127 (1999)CrossRefGoogle Scholar
  21. 21.
    B. Vidhya, Mater. Sci. Eng. B 174, 216 (2010)CrossRefGoogle Scholar
  22. 22.
    A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A.R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y.E. Romanyuk, G. Bilger, A.N. Tiwari, Nat. Mater. 10, 857 (2011)CrossRefGoogle Scholar
  23. 23.
    H. Marko, L. Arzel, A. Darga, N. Barreau, S. Noël, D. Mencaraglia, J. Kessler, Thin Solid Films 519(21), 7228–7231 (2011)CrossRefGoogle Scholar
  24. 24.
    H. Khallaf, I.O. Oladeji, G. Chai, L. Chow, Thin Solid Films 516(21), 7306–7312 (2008)CrossRefGoogle Scholar
  25. 25.
    S. Agilan, S. Venkatachalam, D. Mangalaraj, S.K. Narayandass, S. Velumani, G. Mohan Rao, V.P. Singh, Mater. Charact. 58(8–9), 701–707 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsMadanapalle Institute of Technology and ScienceChittoorIndia
  2. 2.Department of Electrical Engineering-SEESCINVESTAV-IPNMexico D.F.Mexico
  3. 3.National Renewable Energy LaboratoryGoldenUSA

Personalised recommendations