High-temperature reliability of low-temperature and pressureless micron Ag sintered joints for die attachment in high-power device
- 383 Downloads
- 15 Citations
Abstract
Micron Ag paste had a more affordable price, feasible large-scale synthesis, and longer storage life compared to nano Ag paste, thus it attracts much industrial interest for die attachment of high-power devices. However, the previous studies of high-temperature reliability were mainly focused on nano Ag joints, the research about reliability of micron Ag joints, especially low-temperature and pressureless, was very limited. Therefore, we evaluated high-temperature stability of low-temperature and pressureless micron Ag joint, involving in the changes of mechanical behaviors, evolution of microstructure and interfacial reliability. The average joint strength of micron Ag joints was independent of aging time and kept approximately 35 MPa after aging for 1000 h. The fracture of the micron joint was dominated by the ductile deformation of Ag grains during the fracture process. On the other hand, the microstructure of porous structure evolved greatly during aging process. Ag grains were oriented randomly before and after aging process, but the Ag grains increased slightly from 827.2 nm initially to 1178.4 nm after 1000 h aging. Meanwhile, the pores size in porous structure increased, the number decreased significantly, and the porosity also decreased slightly. Moreover, the barrier layers at interfaces of micron Ag joint remained stable and reliable during aging at 250 °C. The results would promote the large-scale application of the commercially available micron Ag paste in high-power devices.
Notes
Acknowledgements
This work was also partly supported by the JST Advanced Low Carbon Technology Research and Development Program (ALCA) project “Development of a high frequency GaN power module package technology”. H. Zhang acknowledges the financial support from China Scholarship Council for his PhD research in Osaka University.
References
- 1.J.B. Casady, R.W. Johnson, Solid-State Electron. 39, 1409 (1996)CrossRefGoogle Scholar
- 2.U.K. Mishra, L. Shen, T.E. Kazior, Y.F. Wu, Proc. IEEE 96, 287, (2008)CrossRefGoogle Scholar
- 3.K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, M. Nogi, Microelectron. Reliab. 52, 375 (2012)CrossRefGoogle Scholar
- 4.P.G. Neudeck, R.S. Okojie, L.Y. Chen, Proc. IEEE 90, 1065 (2002)CrossRefGoogle Scholar
- 5.M. Abtew, G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000)CrossRefGoogle Scholar
- 6.K. Suganuma, Curr. Opin. Solid State Mater. Sci. 5, 55 (2001)CrossRefGoogle Scholar
- 7.G.S. Zhang, H.Y. Jing, L.Y. Xu, J. Wei, Y.D. Han, J. Alloy. Compd. 476, 138 (2009)CrossRefGoogle Scholar
- 8.V. Chidambaram, J. Hattel, J. Hald, Microelectron. Eng. 88, 981 (2011)CrossRefGoogle Scholar
- 9.J.C. Liu, S. Park, S. Nagao et al., Corros. Sci. 92, 263 (2015)CrossRefGoogle Scholar
- 10.E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Acta Mater. 53, 2385 (2005)CrossRefGoogle Scholar
- 11.K.S. Siow, J. Electron. Mater. 43, 947 (2014)CrossRefGoogle Scholar
- 12.S.A. Paknejad, G. Dumas, G. West, G. Lewis, S.H. Mannan, J. Alloy. Compd. 617, 994 (2014)CrossRefGoogle Scholar
- 13.J. Yan, G. Zou, A. Wu et al., Scr. Mater. 66, 582 (2012)CrossRefGoogle Scholar
- 14.H. Ogura, M. Maruyama, R. Matsubayashi et al., J. Electron. Mater. 39, 1233 (2010)CrossRefGoogle Scholar
- 15.H. Yu, L. Li, Y. Zhang, Scr. Mater. 66, 931 (2012)CrossRefGoogle Scholar
- 16.T.G. Lei, J.N. Calata, G.Q. Lu, X. Chen, S. Luo, IEEE Trans. Compon. Packag. Technol. 33, 98 (2010)CrossRefGoogle Scholar
- 17.M. Maruyama, R. Matsubayashi, H. Iwakuro, S. Isoda, T. Komatsu, Appl. Phys. A 93, 467 (2008)CrossRefGoogle Scholar
- 18.R. Khazaka, L. Mendizabal, D. Henry, J. Electron. Mater. 43, 2459 (2014)CrossRefGoogle Scholar
- 19.G.Q. Lu, J.N. Calata, T.G. Lei, (2008) 2008 5th International Conference on Integrated Power Systems, CIPS 2008 Google Scholar
- 20.S. Wang, M. Li, H. Ji, C. Wang, Scr. Mater. 69, 789 (2013)CrossRefGoogle Scholar
- 21.J. Jiu, H. Zhang, S. Koga, S. Nagao, Y. Izumi, K. Suganuma, J. Mater. Sci. 26, 7183 (2015)Google Scholar
- 22.H. Nishikawa, X. Liu, X. Wang, A. Fujita, N. Kamada, M. Saito, Mater. Lett. 161, 231 (2015)CrossRefGoogle Scholar
- 23.G. Zeng, S. Yu, Y. Gao, C. Liu, X. Han, Mater. Sci. Eng. A 645, 273 (2015)CrossRefGoogle Scholar
- 24.S. Yu, C. Liu, Y. Gao, S. Jiang, Y. Yao, Mater. Sci. Eng. A 689, 40 (2017)CrossRefGoogle Scholar
- 25.J. Jiu, H. Zhang, S. Nagao et al., J. Mater. Sci. 51, 3422 (2016)CrossRefGoogle Scholar
- 26.H. Zhang, Y. Gao, J. Jiu, K. Suganuma, J. Alloy. Compd. 696, 123 (2017)CrossRefGoogle Scholar
- 27.K. Suganuma, J.M. Song, Y.S. Lai, Microelectron. Reliab. 55, 2523 (2015)CrossRefGoogle Scholar
- 28.P. Gadaud, V. Caccuri, D. Bertheau, J. Carr, X. Milhet, Mater. Sci. Eng. A 669, 379 (2016)CrossRefGoogle Scholar
- 29.C. Chen, S. Nagao, K. Suganuma et al., Acta Mater. 129, 41 (2017)CrossRefGoogle Scholar
- 30.X. Milhet, P. Gadaud, V. Caccuri, D. Bertheau, D. Mellier, M. Gerland, J. Electron. Mater. 44, 3948 (2015)CrossRefGoogle Scholar
- 31.S. Zabihzadeh, S. Van Petegem, L.I. Duarte, R. Mokso, A. Cervellino, H. Van Swygenhoven, Acta Mater. 97, 116 (2015)CrossRefGoogle Scholar
- 32.S. Chen, G. Fan, X. Yan, C. LaBarbera, L. Kresge, N.C. Lee, (2014) Proceedings—2014 47th International Symposium on Microelectronics, IMAPS 2014 Google Scholar
- 33.S. Chen, C. Labarbera, N.C. Lee, (2016) IMAPS International Conference and Exhibition on High Temperature Electronics, HiTEC 2016 Google Scholar
- 34.W. Guo, H. Zhang, X. Zhang et al., J. Alloy. Compd. 690, 86 (2017)CrossRefGoogle Scholar
- 35.H. Zhang, G. Zou, L. Liu et al., J. Mater. Sci. 52, 3375 (2017)CrossRefGoogle Scholar
- 36.H. Zhang, G. Zou, L. Liu et al., Appl. Phys. A 122, 896 (2016)CrossRefGoogle Scholar
- 37.E.O. Hall, Proc. Phys. Soc. B 64, 747 (1951)CrossRefGoogle Scholar
- 38.S.F. Pugh, London, Edinburgh, Dublin Philos. Mag. J. Sci. 45, 823 (1954)CrossRefGoogle Scholar
- 39.J. Ordonez-Miranda, M. Hermens, I. Nikitin et al., Int. J. Therm. Sci. 108, 185 (2016)CrossRefGoogle Scholar