High-temperature reliability of low-temperature and pressureless micron Ag sintered joints for die attachment in high-power device

  • Hao Zhang
  • Chuantong ChenEmail author
  • Jinting Jiu
  • Shijo Nagao
  • Katsuaki Suganuma


Micron Ag paste had a more affordable price, feasible large-scale synthesis, and longer storage life compared to nano Ag paste, thus it attracts much industrial interest for die attachment of high-power devices. However, the previous studies of high-temperature reliability were mainly focused on nano Ag joints, the research about reliability of micron Ag joints, especially low-temperature and pressureless, was very limited. Therefore, we evaluated high-temperature stability of low-temperature and pressureless micron Ag joint, involving in the changes of mechanical behaviors, evolution of microstructure and interfacial reliability. The average joint strength of micron Ag joints was independent of aging time and kept approximately 35 MPa after aging for 1000 h. The fracture of the micron joint was dominated by the ductile deformation of Ag grains during the fracture process. On the other hand, the microstructure of porous structure evolved greatly during aging process. Ag grains were oriented randomly before and after aging process, but the Ag grains increased slightly from 827.2 nm initially to 1178.4 nm after 1000 h aging. Meanwhile, the pores size in porous structure increased, the number decreased significantly, and the porosity also decreased slightly. Moreover, the barrier layers at interfaces of micron Ag joint remained stable and reliable during aging at 250 °C. The results would promote the large-scale application of the commercially available micron Ag paste in high-power devices.



This work was also partly supported by the JST Advanced Low Carbon Technology Research and Development Program (ALCA) project “Development of a high frequency GaN power module package technology”. H. Zhang acknowledges the financial support from China Scholarship Council for his PhD research in Osaka University.


  1. 1.
    J.B. Casady, R.W. Johnson, Solid-State Electron. 39, 1409 (1996)CrossRefGoogle Scholar
  2. 2.
    U.K. Mishra, L. Shen, T.E. Kazior, Y.F. Wu, Proc. IEEE 96, 287, (2008)CrossRefGoogle Scholar
  3. 3.
    K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, M. Nogi, Microelectron. Reliab. 52, 375 (2012)CrossRefGoogle Scholar
  4. 4.
    P.G. Neudeck, R.S. Okojie, L.Y. Chen, Proc. IEEE 90, 1065 (2002)CrossRefGoogle Scholar
  5. 5.
    M. Abtew, G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000)CrossRefGoogle Scholar
  6. 6.
    K. Suganuma, Curr. Opin. Solid State Mater. Sci. 5, 55 (2001)CrossRefGoogle Scholar
  7. 7.
    G.S. Zhang, H.Y. Jing, L.Y. Xu, J. Wei, Y.D. Han, J. Alloy. Compd. 476, 138 (2009)CrossRefGoogle Scholar
  8. 8.
    V. Chidambaram, J. Hattel, J. Hald, Microelectron. Eng. 88, 981 (2011)CrossRefGoogle Scholar
  9. 9.
    J.C. Liu, S. Park, S. Nagao et al., Corros. Sci. 92, 263 (2015)CrossRefGoogle Scholar
  10. 10.
    E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Acta Mater. 53, 2385 (2005)CrossRefGoogle Scholar
  11. 11.
    K.S. Siow, J. Electron. Mater. 43, 947 (2014)CrossRefGoogle Scholar
  12. 12.
    S.A. Paknejad, G. Dumas, G. West, G. Lewis, S.H. Mannan, J. Alloy. Compd. 617, 994 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Yan, G. Zou, A. Wu et al., Scr. Mater. 66, 582 (2012)CrossRefGoogle Scholar
  14. 14.
    H. Ogura, M. Maruyama, R. Matsubayashi et al., J. Electron. Mater. 39, 1233 (2010)CrossRefGoogle Scholar
  15. 15.
    H. Yu, L. Li, Y. Zhang, Scr. Mater. 66, 931 (2012)CrossRefGoogle Scholar
  16. 16.
    T.G. Lei, J.N. Calata, G.Q. Lu, X. Chen, S. Luo, IEEE Trans. Compon. Packag. Technol. 33, 98 (2010)CrossRefGoogle Scholar
  17. 17.
    M. Maruyama, R. Matsubayashi, H. Iwakuro, S. Isoda, T. Komatsu, Appl. Phys. A 93, 467 (2008)CrossRefGoogle Scholar
  18. 18.
    R. Khazaka, L. Mendizabal, D. Henry, J. Electron. Mater. 43, 2459 (2014)CrossRefGoogle Scholar
  19. 19.
    G.Q. Lu, J.N. Calata, T.G. Lei, (2008) 2008 5th International Conference on Integrated Power Systems, CIPS 2008 Google Scholar
  20. 20.
    S. Wang, M. Li, H. Ji, C. Wang, Scr. Mater. 69, 789 (2013)CrossRefGoogle Scholar
  21. 21.
    J. Jiu, H. Zhang, S. Koga, S. Nagao, Y. Izumi, K. Suganuma, J. Mater. Sci. 26, 7183 (2015)Google Scholar
  22. 22.
    H. Nishikawa, X. Liu, X. Wang, A. Fujita, N. Kamada, M. Saito, Mater. Lett. 161, 231 (2015)CrossRefGoogle Scholar
  23. 23.
    G. Zeng, S. Yu, Y. Gao, C. Liu, X. Han, Mater. Sci. Eng. A 645, 273 (2015)CrossRefGoogle Scholar
  24. 24.
    S. Yu, C. Liu, Y. Gao, S. Jiang, Y. Yao, Mater. Sci. Eng. A 689, 40 (2017)CrossRefGoogle Scholar
  25. 25.
    J. Jiu, H. Zhang, S. Nagao et al., J. Mater. Sci. 51, 3422 (2016)CrossRefGoogle Scholar
  26. 26.
    H. Zhang, Y. Gao, J. Jiu, K. Suganuma, J. Alloy. Compd. 696, 123 (2017)CrossRefGoogle Scholar
  27. 27.
    K. Suganuma, J.M. Song, Y.S. Lai, Microelectron. Reliab. 55, 2523 (2015)CrossRefGoogle Scholar
  28. 28.
    P. Gadaud, V. Caccuri, D. Bertheau, J. Carr, X. Milhet, Mater. Sci. Eng. A 669, 379 (2016)CrossRefGoogle Scholar
  29. 29.
    C. Chen, S. Nagao, K. Suganuma et al., Acta Mater. 129, 41 (2017)CrossRefGoogle Scholar
  30. 30.
    X. Milhet, P. Gadaud, V. Caccuri, D. Bertheau, D. Mellier, M. Gerland, J. Electron. Mater. 44, 3948 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Zabihzadeh, S. Van Petegem, L.I. Duarte, R. Mokso, A. Cervellino, H. Van Swygenhoven, Acta Mater. 97, 116 (2015)CrossRefGoogle Scholar
  32. 32.
    S. Chen, G. Fan, X. Yan, C. LaBarbera, L. Kresge, N.C. Lee, (2014) Proceedings—2014 47th International Symposium on Microelectronics, IMAPS 2014 Google Scholar
  33. 33.
    S. Chen, C. Labarbera, N.C. Lee, (2016) IMAPS International Conference and Exhibition on High Temperature Electronics, HiTEC 2016 Google Scholar
  34. 34.
    W. Guo, H. Zhang, X. Zhang et al., J. Alloy. Compd. 690, 86 (2017)CrossRefGoogle Scholar
  35. 35.
    H. Zhang, G. Zou, L. Liu et al., J. Mater. Sci. 52, 3375 (2017)CrossRefGoogle Scholar
  36. 36.
    H. Zhang, G. Zou, L. Liu et al., Appl. Phys. A 122, 896 (2016)CrossRefGoogle Scholar
  37. 37.
    E.O. Hall, Proc. Phys. Soc. B 64, 747 (1951)CrossRefGoogle Scholar
  38. 38.
    S.F. Pugh, London, Edinburgh, Dublin Philos. Mag. J. Sci. 45, 823 (1954)CrossRefGoogle Scholar
  39. 39.
    J. Ordonez-Miranda, M. Hermens, I. Nikitin et al., Int. J. Therm. Sci. 108, 185 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hao Zhang
    • 1
    • 2
  • Chuantong Chen
    • 2
    Email author
  • Jinting Jiu
    • 2
    • 3
  • Shijo Nagao
    • 1
    • 2
  • Katsuaki Suganuma
    • 1
    • 2
  1. 1.Department of Adaptive Machine SystemsOsaka UniversityOsakaJapan
  2. 2.Institute of Scientific and Industrial ResearchOsaka UniversityOsakaJapan
  3. 3.Senju Metal Industry Co. Ltd.TokyoJapan

Personalised recommendations