Green synthesis of amorphous and gamma aluminum oxide nanoparticles by tragacanth gel and comparison of their photocatalytic activity for the degradation of organic dyes

  • Kobra Atrak
  • Ali RamazaniEmail author
  • Saeid Taghavi Fardood


The current study concentrates on Al2O3 nanoparticles (NPs) synthesis using tragacanth gel as a biotemplate source by the means of sol–gel method at different calcination temperatures. The synthesized catalysts were characterized by XRD, FTIR, FESEM, and EDX. The XRD analysis indicated that the catalyst calcined at 500 °C has amorphous and the one calcined at 900 °C has gamma phase. The comparison of photocatalytic activity of both amorphous and gamma Al2O3 NPs was investigated under visible light irradiation, considering their effects on the degradation of organic dyes, for instance direct black 122 (DB122) and reactive yellow 145 (RY145). The studied effects include initial dye concentration, photocatalyst dosage, and visible light irradiation on dye degradation. Comparison of photocatalytic activity of mentioned photocatalysts exhibited better degradation of a-Al2O3 than that of γ-Al2O3. The results stated that a-Al2O3 catalyst could remove 97% of the direct black 122, whereas with γ-Al2O3, only 30% dye was removed. Regarding RY145, 95 and 26% degradation was observed, respectively.



This work was supported by the “Iran National Science Foundation: INSF”.


  1. 1.
    S. Taghavi Fardood, A. Ramazani, Z. Golfar, S.W. Joo, Appl. Organomet. Chem. 31, e3823 (2017)CrossRefGoogle Scholar
  2. 2.
    A. Ramazani, A. Farshadi, A. Mahyari, F. Sadri, S.W. Joo, P.A. Asiabi, S. Taghavi Fardood, N. Dayyani, H. Ahankar, Int. J. Nano Dimens. 7, 41 (2016)Google Scholar
  3. 3.
    F. Ahmadi, M. Rahimi-Nasrabadi, M. Behpour, J. Mater. Sci. Mater. Electron. 28, 1531 (2017)CrossRefGoogle Scholar
  4. 4.
    S. Taghavi Fardood, A. Ramazani, S.W. Joo, J. Appl. Chem. Res. 12, 8 (2018)Google Scholar
  5. 5.
    A. Ramazani, S. Taghavi Fardood, Z. Hosseinzadeh, F. Sadri, S.W. Joo, Iran. J. Catal. 7, 181 (2017)Google Scholar
  6. 6.
    I. Vlassiouk, A. Krasnoslobodtsev, S. Smirnov, M. Germann, Langmuir 20, 9913 (2004)CrossRefGoogle Scholar
  7. 7.
    S. Taghavi Fardood, A. Ramazani, Z. Golfar, S.W. Joo, J. Appl. Chem. Res. 11, 19 (2017)Google Scholar
  8. 8.
    V.K. Yadav, K. Ganesh Babu, J. Org. Chem. 69, 577 (2004)CrossRefGoogle Scholar
  9. 9.
    R.W. Hicks, T.J. Pinnavaia, Chem. Mater. 15, 78 (2003)CrossRefGoogle Scholar
  10. 10.
    Z. Zhang, R.W. Hicks, T.R. Pauly, T.J. Pinnavaia, J. Am. Chem. Soc. 124, 1592 (2002)CrossRefGoogle Scholar
  11. 11.
    T.-Z. Ren, Z.-Y. Yuan, B.-L. Su, Langmuir 20, 1531 (2004)CrossRefGoogle Scholar
  12. 12.
    S. Taghavi Fardood, A. Ramazani, S.W. Joo, J. Appl. Chem. Res. 11, 8 (2017)Google Scholar
  13. 13.
    L. Wilcox, G. Burnside, B. Kiranga, R. Shekhawat, M.K. Mazumder, R.M. Hawk, D.A. Lindquist, S.D. Burton, Chem. Mater. 15, 51 (2003)CrossRefGoogle Scholar
  14. 14.
    I. Levin, D. Brandon, J. Am. Ceram. Soc. 81, 1995 (1998)CrossRefGoogle Scholar
  15. 15.
    A. Beitollahi, H. Hosseini-Bay, H. Sarpoolaki, J. Mater. Sci. Mater. Electron. 21, 130 (2010)CrossRefGoogle Scholar
  16. 16.
    D.T. Thomaz, M. Guiotoku, D. Hotza, J.C. Llópiz, C.R. Yurell, Rambo, J. Mater. Sci. Mater. Electron. 28, 17131 (2017)CrossRefGoogle Scholar
  17. 17.
    A.J. Fanelli, J.V. Burlew, J. Am. Ceram. Soc. 69 (1986).
  18. 18.
    S. Bhaduri, E. Zhou, S. Bhaduri, Nanostruct. Mater. 7, 487 (1996)CrossRefGoogle Scholar
  19. 19.
    K. Yatsui, T. Yukawa, C. Grigoriu, M. Hirai, W. Jiang, J. Nanopart. Res. 2, 75 (2000)CrossRefGoogle Scholar
  20. 20.
    R. Kavitha, V. Jayaram, Surf. Coat. Technol. 201, 2491 (2006)CrossRefGoogle Scholar
  21. 21.
    C.B. Reid, J.S. Forrester, H.J. Goodshaw, E.H. Kisi, G.J. Suaning, Ceram. Int. 34, 1551 (2008)CrossRefGoogle Scholar
  22. 22.
    D.H. Trinh, M. Ottosson, M. Collin, I. Reineck, L. Hultman, H. Högberg, Thin Solid Films 516, 4977 (2008)CrossRefGoogle Scholar
  23. 23.
    F. Mirjalili, M. Hasmaliza, L.C. Abdullah, Ceram. Int. 36, 1253 (2010)CrossRefGoogle Scholar
  24. 24.
    J.G. Li, X. Sun, Acta Mater. 48, 3103 (2000)CrossRefGoogle Scholar
  25. 25.
    Z. Shao, W. Zhou, Z. Zhu, Prog. Mater Sci. 57, 804 (2012)CrossRefGoogle Scholar
  26. 26.
    S. Taghavi Fardood, A. Ramazani, S. Moradi, Chem. J. Mold. 12, 115 (2017)CrossRefGoogle Scholar
  27. 27.
    E. Forgacs, T. Cserhati, G. Oros, Environ. Int. 30, 953 (2004)CrossRefGoogle Scholar
  28. 28.
    S. Taghavi Fardood, Z. Golfar, A. Ramazani, J. Mater. Sci. Mater. Electron. 28, 17002 (2017)CrossRefGoogle Scholar
  29. 29.
    E. Shayegan Mehr, M. Sorbiun, A. Ramazani, S. Taghavi Fardood, J. Mater. Sci. Mater. Electron. 29, 1333 (2017)CrossRefGoogle Scholar
  30. 30.
    P.V. Nidheesh, R. Gandhimathi, S.T. Ramesh, Environ. Sci. Pollut. Res. 20, 2099 (2013)CrossRefGoogle Scholar
  31. 31.
    M. Sorbiun, E. Shayegan Mehr, A. Ramazani, S. Taghavi Fardood, J. Mater. Sci. Mater. Electron. (2017). Google Scholar
  32. 32.
    S. Wang, X. Li, S. Wang, Y. Li, Y. Zhai, Mater. Lett. 62, 3552 (2008)CrossRefGoogle Scholar
  33. 33.
    A. Afkhami, M. Saber-Tehrani, H. Bagheri, J. Hazard. Mater. 181, 836 (2010)CrossRefGoogle Scholar
  34. 34.
    K.M. Batoo, S. Kumar, C.G. Lee, Curr. Appl. Phys. 9, 826 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kobra Atrak
    • 1
  • Ali Ramazani
    • 1
    Email author
  • Saeid Taghavi Fardood
    • 1
  1. 1.Department of ChemistryUniversity of ZanjanZanjanIran

Personalised recommendations