Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 18, pp 15299–15306 | Cite as

Optical and electrical properties of fluorine doped tin oxide thin film

  • E. Ching-PradoEmail author
  • A. Watson
  • H. Miranda


Thin film of SnO2:F was prepared by spray pyrolysis technique on glass substrate. Surface Morphology, using scanning electron microscope, shows micrograph image with grains size distribution between 16 and 380 nm. Structural characterization by XRD indicates a similar rutile polycrystalline material as SnO2. A four point probe I–V measurement (Van der Pauw method) was used to study electrical properties and the result shows a room temperature sheet resistance of 24 Ω/sq. In addition, a temperature dependence of the electrical response indicates that defect scattering is the main contribution to the DC resistivity. Optical properties were studied by UV–Visible spectroscopy and the spectrum was fitted using Drude-Lorentz model with DC conductivity value (frequency equal to zero) as a fitting condition. Optical result shows average transmittance around 81.2% for the visible frequency range. It indicates a TCO figure of merit value of 5.2 × 10−3 Ω−1. In addition, a first principle calculation using DFT with PBE0 hybrid exchange-correlation was realized to SnO2 and SnO2:F systems in order to understand, from a theoretical point of view, the experimental results. Finally, the FTO film was utilized and evaluated as a transparent electrode in the preparation of a dye-sensitized solar cell.



This work was partially supported by Col-11-014 and Fid-05-061 SENACyT grants, Panama. Thanks to SmithSonian Tropical Research Institute, especially to Jorge Ceballos, for collaborate in SEM measurements.


  1. 1.
    R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, K.Y. Rajpure, Physical properties of sprayed antimony doped tin oxide thin films thickness: the role of thickness. J. Semicond. 32(5), 053001–053001 (2011)CrossRefGoogle Scholar
  2. 2.
    E. Ching-Prado, A. Watson, H. Miranda, I. Abrego, Optical properties of multilayers TiO2/SnO2:F thin films. MRS Adv. (Energy and Environment). 1(46), 3133 (2016)CrossRefGoogle Scholar
  3. 3.
    B. Zhang, J. Tian, J.X. Zhang, W. Cai, The studies on the role of fluorine in SnO2:F films prepared by spray pyrolysis with SnCl4. J. Optoelectron. Adv. Mater. 13(1), 89 (2011)Google Scholar
  4. 4.
    Z.Y. Banyamin, P.J. Kelly, G. West, J. Boardman, Electrical and optical properties of fluorine doped tin oxide thin films prepared by magnetron sputtering. Coatings 4, 732 (2014)CrossRefGoogle Scholar
  5. 5.
    J.M. Rodríguez, A. Watson, I. Abrego, J. Ardisson, C.A. Samudio, E. Ching-Prado, A water vapor sensor application of Sn1xFexO2d. Mater. Res. Soc. Symp. Proc. (2015). Google Scholar
  6. 6.
    A.A. Yadava, E.U. Masumdar, A.V. Moholkar, M. Neumann-Spallart, K.Y. Rajpure, C.H. Bhosale, Electrical, structural and optical properties of SnO2:F thin films: effect of the substrate temperature. J. Alloy. Compd. 488, 350 (2009)CrossRefGoogle Scholar
  7. 7.
    A. Agashe, S. Mahamuni, Competitive effects of film thickness and growth rate in spray pyrolytically deposited fluorine-doped tin dioxide films. Thin Solid Films 518, 4868–4873 (2010)CrossRefGoogle Scholar
  8. 8.
    K. Kaviyarasu, P.A. Devarajan, S.S.J. Xavier, S.A. Thomas, S. Selvakumar, One pot synthesis and characterization of cesium doped SnO2 nanocrystals via a hydrothermal process. J. Mater. Sci. Technol. 28(1), 15–20 (2012)CrossRefGoogle Scholar
  9. 9.
    M. Arularasu, M. Anbarasu, S. Poovaragan, R. Sundaram, K. Kanimozhi, C.M. Magdalane, K. Kaviyarasu, F. Thema, D. Letsholathebe, G.T. Mola, M. Maaza, Structural, optical, morphological and microbial studies on SnO2 nanoparticles prepared by co-precipitation method. J. Nanosci. Nanotechnol. 18(5), 3511–3517 (2018)CrossRefGoogle Scholar
  10. 10.
    J. Kennedy, P.P. Murmu, E. Manikandan, S.Y. Lee, Investigation of structural and photoluminescence properties of gas and metal ions doped zinc oxide single crystals. J. Alloy. Compd. 616, 614–617 (2014)CrossRefGoogle Scholar
  11. 11.
    J. Kennedy, P.P. Murmu, J. Leveneur, A. Markwitz, J. Futter, Controlling preferred orientation and electrical conductivity of zinc oxide thin films by post growth annealing treatment. Appl. Surf. Sci. 367, 52–58 (2016)CrossRefGoogle Scholar
  12. 12.
    E. Sathyaseelan, K. Manikandan, J. Sivakumar, M. Kennedy, Maaza, Enhanced visible photoluminescent and structural properties of ZnO/KIT-6 nanoporous materials for white light emitting diode (w-LED) application. J. Alloy. Compd. 651, 479–482 (2015)CrossRefGoogle Scholar
  13. 13.
    K. Kaviyarasu, C.M. Magdalane, K. Kanimozhi, J. Kennedy, B. Siddhardha, C.S. Sharma, F.T. Thema, E.S. Reddy, N.K. Rotte, D. Letsholathebe, G.T. Mola, M. Maaza, Elucidation of photocatalysis, photoluminescence and antibacterial studies of ZnO thin films by spin coating method. J. Photochem. Photobiol. B 173, 466–475 (2017)CrossRefGoogle Scholar
  14. 14.
    I. Chambouleyron, J.M. Martínez, in Optical Properties of Dielectric and Semiconductor, Chap. 12, ed. by H.S. Nalwa. Handbook of Thin Films Materials, vol. 3 (Academic Press, San Diego, 2001), pp. 1–30Google Scholar
  15. 15.
    M. Kadi, A. Smaali, R. Outemzabet, Analysis of optical and related properties of tin oxide thin films determined by Drude-Lorentz model. Surf. Coat. Technol. 211, 45 (2012)CrossRefGoogle Scholar
  16. 16.
    B.V. Odari, M. Mageto, R. Musembi, H. Othieno, F. Gaitho, V. Muramba, Optical and electrical properties of Pd doped Sno2 thin films deposited by spray pyrolysis. Aust. J. Basic Appl. Sci. 7(2), 89–98 (2013)Google Scholar
  17. 17.
    F.C. Lai, L.M. Lin, R.Q. Gai, Y.Z. Lin, Z.G. Huang, Determination of optical constants and thicknesses of In2O3:Sn films from transmittance data. Thin Solid Films 515, 7387 (2007)CrossRefGoogle Scholar
  18. 18.
    J. Lin, Z.Q. Li, Electronic conduction properties of indium tin oxide: single-particle and many-body transport. J. Phys. 26, 343201–343201 (2014)Google Scholar
  19. 19.
    M.A. Al-Jalali, S.A. Mouhammad, Phonons Bloch-Gruneisen function and its applications to noble metals resistivity. Int. J. Pure Appl. Math. 102(2), 233 (2015)CrossRefGoogle Scholar
  20. 20.
    B.-T. Lin, Y.-F. Chen, J.-J. Lin, C.-Y. Wu, Temperature dependence of resistance and thermopower of thin indium tin oxide film. Thin Solid Films 518, 6997 (2010)CrossRefGoogle Scholar
  21. 21.
    H. Gao, T. Lin, X.D. Liu, X.H. Zhang, X.N. Li, J. Wu, Y.F. Liu, X.F. Wang, Y.W. Chen, B. Ni, N. Dai, J.H. Chu, Low temperature electrical transport properties of F-doped SnO2 films. Solid State Commun. 157, 49 (2013)CrossRefGoogle Scholar
  22. 22.
    G. Utlu, N. Artunc, The effects of grain boundary scattering on electrical resistivity of Ag/NiSi silicide films formed on silicon substrate at 500 °C by RTA. Appl. Surf. Sci. 310, 248 (2014)CrossRefGoogle Scholar
  23. 23.
    H. Cachet, in Films and Powders of Fluorine-Doped Tin Dioxide, 1st edn, ed. by T. Nakajima, H. Groult. Fluorinated Materials for Energy Conversion (Elsevier Science, Amsterdam, 2005), p. 520Google Scholar
  24. 24.
    Y. Dou, T. Fishlock, R.G. Egdell, Band-gap shrinkage in n-type-doped CdO probed by photoemission spectroscopy. Phys. Rev. B 55(20), R13381 (1997)CrossRefGoogle Scholar
  25. 25.
    A.B. Kuzmenko, Kramers Kronig constrained variational analysis of optical spectra. Rev. Sci. Instrum. 76(8), 083108 (2005)CrossRefGoogle Scholar
  26. 26.
    B. Kuzmenko, Guide to Reffit (2004). Accessed 7 Jan 2016
  27. 27.
    G. Kaur, A. Mitra, K.L. Yadav, Pulsed laser deposited Al-doped ZnO thin films for optical applications. Progr. Nat. Sci. 25(1), 12 (2015)CrossRefGoogle Scholar
  28. 28.
    A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, K.Y. Rajpure, Structural and optoelectronic properties of sprayed Sb:SnO2 thin films: effects of substrate temperature and nozzle-to-substrate distance. J. Semicond. 32(10), 102001–102001 (2011)CrossRefGoogle Scholar
  29. 29.
    F. El Akkad, T.A.P. Paulose, Optical transitions and point defects in F:SnO2 films: effect of annealing. Appl. Surf. Sci. 295, 8 (2014)CrossRefGoogle Scholar
  30. 30.
    E. Elangovan, K. Ramamurthi, Studies on micro-structural and electrical properties of spray-deposited fluorine-doped tin oxide thin films from low-cost precursor. Thin Solid Films 476, 231 (2005)CrossRefGoogle Scholar
  31. 31.
    W.Z. Samad, M.M. Salleh, A. Shafiee, M.A. Yarmo, Structural, optical and electrical properties of fluorine doped tin oxide thin films deposited using inkjet printing technique. Sains Malaysiana 40(3), 251 (2011)Google Scholar
  32. 32.
    T. Fukano, T. Motohiro, Low-temperature growth of highly crystallized transparent conductive fluorine-doped tin oxide films by intermittent spray pyrolysis deposition. Sol. Energy Mater. Sol. Cells. 82, 567 (2004)Google Scholar
  33. 33.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J.Phys. 21(1), 395502 (2009)Google Scholar
  34. 34.
    J.P. Perdew, M. Ernzerhof, K. Burke, Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105(22), 9982 (1996)CrossRefGoogle Scholar
  35. 35.
    M. Weidner, Fermi level determination in tin oxide by photoelectron spectroscopy, Thesis, Technischen Universität Darmstadt, Germany (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Natural Science Department, Faculty of Science and TechnologyTechnological University of PanamaPanama CityPanama

Personalised recommendations