Studies of structural, dielectric and electrical characteristics of BaTiO3–BiFeO3–CaSnO3 electronic system
- 31 Downloads
Abstract
The polycrystalline sample of CaSnO3 modified BiFeO3–BaTiO3 with a composition 0.85BaTiO3–0.1BiFeO3–0.05CaSnO3 (hereafter BTO–BFO–CSO-5) was fabricated by a cost effective ceramic technology. The crystal system and unit cell dimensions of the prepared system were obtained by analyzing the room temperature X-ray spectra or pattern, and found to be an orthorhombic phase. The scanning electron micrograph shows the formation of the high-density ceramic sample. Resistive (impedance, modulus and electrical transport) and insulating (dielectric) properties of the system have been obtained using dielectric and the impedance spectroscopy at various frequencies (102–106 Hz) and temperatures (25–450 °C). The Nyquist plots exhibit the presence of the effect of grains in the prepared sample. The electrical transport properties of the material can be explained with the help of charge transfer by hopping process. The complex electrical modulus plot is used to determine the dielectric relaxation. The frequency dependence of conductivity plot follows the universal Jonscher power law.
References
- 1.W. Eerenstein, N.D. Mathur, J.F. Scott, Nat. Rev. 442, 759 (2006)Google Scholar
- 2.J. Valasek, Phys. Rev. 15, 537 (1920)Google Scholar
- 3.J.F. Scott, Rep. Prog. Phys. 42, 1055 (1979)CrossRefGoogle Scholar
- 4.C. Ederer, N.A. Spaldin, Phys. Rev. B 71, 060401 (2005)CrossRefGoogle Scholar
- 5.N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)CrossRefGoogle Scholar
- 6.G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009)CrossRefGoogle Scholar
- 7.H. Tao, J. Lv, R. Zhang, R. Xiang, J. Wu, Mater. Des. 120, 83 (2017)CrossRefGoogle Scholar
- 8.S. Pattanayak, R.N.P. Choudhary, D. Pattanayak, J. Mater. Sci.: Mater. Electron. 25, 3854 (2014)Google Scholar
- 9.S.V. Baryshnikov, E.V. Charnaya, A.Y. Milinskii, A.A. Antonov, A.S. Bugaev, Compos. B 80, 15 (2015)CrossRefGoogle Scholar
- 10.J.K. Kim, S.S. Kim, W.-J. Kim, Mater. Lett. 59, 4006 (2005)CrossRefGoogle Scholar
- 11.H. Zhang, W. Jo, K. Wang, K.G. Webber, Ceram. Int. 40, 4759 (2014)CrossRefGoogle Scholar
- 12.M. Mahesh Kumar, A. Srinivas, S.V. Suryanarayana, J. Appl. Phys. 87, 855 (2000)CrossRefGoogle Scholar
- 13.R.A.M. Gotardo, D.S.F. Viana, M. Olzon-Dionysio, S.D. Souza, D. Garcia, J.A. Eiras, M.F.S. Alves, L.F. Cotica, I.A. Santos, A.A. Coelho, J. Appl. Phys. 112, 104112 (2012)CrossRefGoogle Scholar
- 14.X. Huang, J. Yin, M. Huang, C. Gao, Z. Yue, J. Mater. Sci.: Mater. Electron. 26, 392 (2015)Google Scholar
- 15.K.H. Yoon, J.B. Kim, W.S. Kim, E.S. Kim, J. Mater. Res. 11, 1996 (1996)CrossRefGoogle Scholar
- 16.M. Muralidharan, V. Anbarasu, A. Elaya Perumal, K. Sivakumar, J. Mater. Sci.: Mater. Electron. 28, 4125 (2017)Google Scholar
- 17.X. Fu, T. Zhao, Y. Zhang, Y. Chen, H. Zhang, J. Nanosci. Nanotechnol. 16, 3865 (2016)CrossRefGoogle Scholar
- 18.H. Mizoguchi, P.M. Woodward, Chem. Mater. 16, 5233 (2004)CrossRefGoogle Scholar
- 19.W. Mao, W. Chen, X. Wang, Y. Zhu, Y. Maa, H. Xue, L. Chu, J. Yang, X. Li, W. Huang, Ceram. Int. 42, 12838 (2016)CrossRefGoogle Scholar
- 20.H.D. Megaw, Proc. R. Soc. Lond. Ser. A 189, 261 (1947)CrossRefGoogle Scholar
- 21.Y.Y. Tomashpol’sky, Y.N. Venevtsev, G.S. Zhdanov, Kristallografiya 9, 846 (1964)Google Scholar
- 22.National Bureau of Standards (U.S.) Monograph 25, 17, 18 (1980)Google Scholar
- 23.E. Wu, POWD MULT: an interactive powder diffraction data interpretation and indexing program version 2.1. School of Physical Science, Hindess University of South Australia, Bedford ParkGoogle Scholar
- 24.F. Bahri, H. Khemakhem, Ceram. Int. 40, 7909 (2014)CrossRefGoogle Scholar
- 25.A. Scalabrin, A.S. Chaves, D.S. Shim, S.P.S. Porto, Phys. Status Solidi B 79, 731 (1977)CrossRefGoogle Scholar
- 26.D. Kothari, V.R. Reddy, V.G. Sathe, A. Gupta, A. Banerjee, A.M. Awasthi, J. Magn. Magn. Mater. 320, 548 (2008)CrossRefGoogle Scholar
- 27.N.K. Karan, R.S. Katiyar, T. Maiti, R. Guo, A.S. Bhalla, J. Raman Spectrosc. 40, 370 (2009)CrossRefGoogle Scholar
- 28.N. Adhlakha, K.L. Yadav, IEEE Trans. Dielectr. Electr. Insul. 21, 2055 (2016)CrossRefGoogle Scholar
- 29.S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, M.L. Nandagoswami, A. Kumar, Mater. Res. Express 3, 065017 (2016)CrossRefGoogle Scholar
- 30.S. Hajra, P. Sharma, S. Sahoo, P.K. Rout, R.N.P. Choudhary, Appl. Phys. A (2017). https://doi.org/10.1007/s00339-017-1411-6 Google Scholar
- 31.Y. Ma, X.M. Chen, Y.Q. Lin, J. Appl. Phys. 103, 124111 (2008)CrossRefGoogle Scholar
- 32.Z.X. Cheng, A.H. Li, X.L. Wang, S.X. Dou, K. Ozawa, H. Kimura, S.J. Zhang, T.R. Shrout, J. Appl. Phys. 103, 07E507 (2008)CrossRefGoogle Scholar
- 33.B. Behera, P. Nayak, R.N.P. Choudhary, Cent. Eur. J. Phys. 6, 289 (2008)Google Scholar
- 34.S.J. Lee, K.Y. Kang, S.K. Han, Appl. Phys. Lett. 75, 1784 (1999)CrossRefGoogle Scholar
- 35.H. Jain, C.H. Hsieh, J. Non-Cryst. Solids 172, 1408 (1994)CrossRefGoogle Scholar
- 36.P. Sharma, S. Hajra, S. Sahoo, P.K. Rout, R.N.P. Choudhary, Process. Appl. Ceram. 11, 171 (2017)CrossRefGoogle Scholar
- 37.A.K. Jonscher, Nature 267, 673 (1977)CrossRefGoogle Scholar
- 38.C.K. Suman, K. Prasad, R.N.P. Choudhary, J. Mater. Sci. 41, 369 (2006)CrossRefGoogle Scholar
- 39.S. Sen, R.N.P. Choudhary, Mater. Chem. Phys. 87, 256 (2004)CrossRefGoogle Scholar
- 40.B.N. Parida, P.R. Das, R. Padhee, R.N.P. Choudhary, J. Phys. Chem. Solids 73, 713 (2012)CrossRefGoogle Scholar
- 41.A. Feteira, J. Am. Ceram. Soc. 92, 967 (2009)CrossRefGoogle Scholar
- 42.F. Borsa, D.R. Torgeson, S.W. Martin, H.K. Patel, Phys. Rev. B 46, 795 (1992)CrossRefGoogle Scholar
- 43.J.R. Macdonald, Solid State Ionics 13, 147 (1984)CrossRefGoogle Scholar