Mn2SiO4/CNT composites as anode materials for high performance lithium-ion batteries

Article

Abstract

Mn2SiO4/CNT composite, which is constructed with polyhedron-shaped particles embedded in the carbon nanotube (CNT) network, has been synthesized by a sol–gel method. The as-prepared Mn2SiO4 presented a well-developed orthorhombic crystal structure, and after modified with CNT, the compound exhibited excellent rate capability and cyclic performance as anode materials for lithium ion batteries. Galvanostatic charge–discharge measurements demonstrated outstanding initial charge and discharge capacity of 664.8 and 392.1 mA h g−1 at the current density of 100 mA g−1, respectively, and stable reversible capacity of 466.9 mA h g−1 was retained after 40 cycles. Even at a high current density of 2000 mA g−1, Mn2SiO4/CNT can deliver the specific capacity of 205.8 mA h g−1. Also, the reaction mechanism of this material is speculated including the formation of Li2SiO3, MnO and Mn. In addition, the significant change of charge transfer resistance compared with pristine Mn2SiO4 confirmed by electrochemical impedance spectroscopy illustrated the fast Li ions intercalation kinetics and reduced electrochemical polarization via CNT modification, suggesting Mn2SiO4/CNT to be promising anode materials for high performance lithium ion batteries.

Notes

Acknowledgements

The support from the National Natural Science Foundation of China [51404142], QingLan Project of Jiangsu Province, the Natural Science Foundation of Jiangsu Province [BK20140936] and the Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD) are acknowledged.

Supplementary material

10854_2018_8786_MOESM1_ESM.docx (236 kb)
Supplementary material 1 (DOCX 235 KB)

References

  1. 1.
    J.M. Tarascon, M. Armand, Nature 414, 359 (2001)CrossRefGoogle Scholar
  2. 2.
    M. Ashuri, Q. He, L.L. Shaw, Nanoscale 8, 74 (2016)CrossRefGoogle Scholar
  3. 3.
    V. Aravindan, Y.-S. Lee, S. Madhavi, Adv. Energy Mater. 5, 1402225 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, C. Capiglia, J. Power Sources 257, 421 (2014)CrossRefGoogle Scholar
  5. 5.
    X. Jia, Y. Kan, X. Zhu, G. Ning, Y. Lu, F. Wei, Nano Energy 10, 344 (2014)CrossRefGoogle Scholar
  6. 6.
    J.W. Kang, D.H. Kim, V. Mathew, J.S. Lim, J.H. Gim, J. Kim, J. Electrochem. Soc. 158, A59 (2011)CrossRefGoogle Scholar
  7. 7.
    Y. Yang, M.T. Mcdowell, A. Jackson, J.J. Cha, S.S. Hong, Y. Cui, Nano Letters 10, 1486 (2010)CrossRefGoogle Scholar
  8. 8.
    C.K. Chan, H. Peng, G. Liu et al., Nat. Nanotechnol. 3, 187 (2015)Google Scholar
  9. 9.
    J.A. Graetz, B.T. Fultz, C. Ahn, R. Yazami (2010) USGoogle Scholar
  10. 10.
    G.X. Wang, Y. Chen, K. Konstantinov, M. Lindsay, H.K. Liu, S.X. Dou, J. Power Sources 109, 142 (2002)CrossRefGoogle Scholar
  11. 11.
    F. Badway, F. Cosandey, N. Pereira, G.G. Amatucci, J. Electrochem. Soc. 150, A1209 (2003)CrossRefGoogle Scholar
  12. 12.
    Z.W. Fu, Y. Wang, X.L. Yue, A. Shangli Zhao, Q.Z. Qin, J. Phys. Chem. B 108, 2236 (2012)CrossRefGoogle Scholar
  13. 13.
    M.C. Stan, R. Klöpsch, A. Bhaskar, J. Li, S. Passerini, M. Winter, Adv. Energy Mater. 3, 231 (2013)CrossRefGoogle Scholar
  14. 14.
    A.S. Aricò, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nat. Mater. 4, 366 (2005)CrossRefGoogle Scholar
  15. 15.
    Y.B. He, B. Li, M. Liu et al., Sci. Rep. 2, 913 (2012)CrossRefGoogle Scholar
  16. 16.
    I. Belharouak, G.M. Koenig, T. Tan, H. Yumoto, N. Ota, K. Amine, J. Electrochem. Soc. 159, A1165 (2012)CrossRefGoogle Scholar
  17. 17.
    M. Islam, G. Ali, M.G. Jeong, W. Choi, K.Y. Chung, H.G. Jung, ACS Appl. Mater. Interfaces 9, 14833 (2017)CrossRefGoogle Scholar
  18. 18.
    G. Ali, G. Rahman, K.Y. Chung, Electrochim. Acta 238, 49 (2017)CrossRefGoogle Scholar
  19. 19.
    C. Tang, J. Zhu, X. Wei et al., Energy Storage Mater. 7, 152 (2017)CrossRefGoogle Scholar
  20. 20.
    Y. Yang, Q. Liang, J. Li et al., Nano Research 4, 882 (2011)CrossRefGoogle Scholar
  21. 21.
    S. Zhang, M. Lu, Y. Li, F. Sun, J. Yang, S. Wang, Mater. Lett. 100, 89 (2013)CrossRefGoogle Scholar
  22. 22.
    F. Mueller, D. Bresser, N. Minderjahn et al., Dalton Trans. 43, 15013 (2014)CrossRefGoogle Scholar
  23. 23.
    W. Xiujuan, T. Chunjuan, W. Xuanpeng et al., ACS Appl. Surf. Sci. 7, 26572 (2015)Google Scholar
  24. 24.
    P. Guo, C. Wang, RSC Adv. 7, 4437 (2017)CrossRefGoogle Scholar
  25. 25.
    Y.Y. Wang, T. Li, Y.X. Qi et al., Electrochim. Acta 186, 572 (2015)CrossRefGoogle Scholar
  26. 26.
    Y.Y. Wang, N. Lun, Y.X. Qi, Y.J. Bai, New J. Chem. 41, 4295 (2017)CrossRefGoogle Scholar
  27. 27.
    C. Tang, J. Sheng, C. Xu et al., J. Mater. Chem. A 3, 19427 (2015)CrossRefGoogle Scholar
  28. 28.
    Y.K. Sun, X. Bai, T. Li et al., (2017) Materials Research Society 2016 Fall Meeting, BostonGoogle Scholar
  29. 29.
    X.Q. Zhang, W.C. Li, B. He et al., J. Mater. Chem. A 6, 1397 (2017)CrossRefGoogle Scholar
  30. 30.
    S. Zhang, L.L. Hou, M. Hou, H. Liang Mater. Lett. 156, 82 (2015)CrossRefGoogle Scholar
  31. 31.
    J. Zhu, C. Tang, Z. Zhuang et al., ACS Appl. Mater. Interfaces 9, 29 (2017)CrossRefGoogle Scholar
  32. 32.
    S. Zhang, L. Ren, S. Peng CrystEngComm. 16, 6195 (2014)CrossRefGoogle Scholar
  33. 33.
    Y. Ma, U. Ulissi, D. Bresser, Y. Ma, Y. Ji, S. Passerini, Electrochim. Acta 258, 535–543(2017)CrossRefGoogle Scholar
  34. 34.
    Y. Zhang, W. Zhou, H. Yu et al., Nanoscale Res. Lett. 12, 325 (2017)CrossRefGoogle Scholar
  35. 35.
    N. Yan, X. Zhou, Y. Li et al., Sci. Rep. 3, 3392 (2013)CrossRefGoogle Scholar
  36. 36.
    G. Ali, J.-H. Lee, B.W. Cho et al., Electrochim. Acta 191, 307 (2016)CrossRefGoogle Scholar
  37. 37.
    S. Abouali, M. Akbari Garakani, Z.-L. Xu, J.-K. Kim, Carbon 102, 262 (2016)CrossRefGoogle Scholar
  38. 38.
    K. Liang, T.Y. Cheang, T. Wen et al., J. Phys. Chem. C 120, 7 (2016)Google Scholar
  39. 39.
    F. Zhang, Y. An, W. Zhai et al., Mater. Res. Bull. 70, 573 (2015)CrossRefGoogle Scholar
  40. 40.
    D.W. Choi, K.L. Choy, Electrochim. Acta 218, 47 (2016)CrossRefGoogle Scholar
  41. 41.
    M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 257, 2717 (2011)CrossRefGoogle Scholar
  42. 42.
    P. Fabrizioli, T. Bürgi, A. Baiker, J. Catal. 207, 88 (2002)CrossRefGoogle Scholar
  43. 43.
    A.P. Grosvenor, E.M. Bellhouse, A. Korinek, M. Bugnet, J.R. Mcdermid, Appl. Surf. Sci. 379, 242 (2016)CrossRefGoogle Scholar
  44. 44.
    S. Vankova, D. Versaci, J. Amici et al., J. Solid State. 21, 3381 (2017)Google Scholar
  45. 45.
    J. Wang, Z. Peng, B. Wang et al., J. Nanomater. 2014, 10 (2014)Google Scholar
  46. 46.
    B. Philippe, R. Dedryvère, J. Allouche et al., Chem. Mater. 24, 1107 (2012)CrossRefGoogle Scholar
  47. 47.
    X. Bai, T. Li, Z. Dang, Y.X. Qi, N. Lun, Y.J. Bai, ACS Appl. Surf. Sci. 9, 1426 (2017)Google Scholar
  48. 48.
    Q. Huang, M. Liu, J. Zhao et al., Appl. Surf. Sci. 427, 535 (2017)CrossRefGoogle Scholar
  49. 49.
    X. Li, C. Zhi, Z. Zhang, H. Dang, Appl. Surf. Sci. 252, 7856 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Material Science and TechnologyNanjing Tech UniversityNanjingPeople’s Republic of China
  2. 2.College of Mathematical Physics and Chemical EngineeringChangzhou Institute of TechnologyChangzhouPeople’s Republic of China
  3. 3.Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech UniversityNanjingPeople’s Republic of China

Personalised recommendations