Design and synthesis of imine linked ZnO nanoparticles functionalized with Al(III), candidate for application in light emitting diodes

Article
  • 26 Downloads

Abstract

Zinc oxide nanoparticles 1.ZnO decorated with dipodal organic receptor 1 bearing imine linkage were synthesized using wet chemical precipitation technique. The imine linked receptor 1 used as capping agent was synthesized using condensation reaction. 1.ZnO nanoparticles were characterized through FTIR, SEM, TEM, DLS and fluorescence spectroscopy. The emission spectra of surface modified ZnO nanoparticles authenticated the passivation of surface defects and dangling bonds which otherwise are available on the surface of uncapped ZnO nanoparticles. 1.ZnO nanoparticles demonstrated blue emission at 461 nm. The binding affinity of 1.ZnO nanoparticles was also checked in presence of metal ions through changes observed in the emission spectra. An enhancement up to threefold in the fluorescence intensity was achieved from 1.ZnO nanoparticles upon coordination with Al3+ metal ion. The results demonstrated that our design strategy resulted in pure and narrow emission with FWHM 70 nm. This effective way of achieving the selectivity factor and enhanced quantum yield can be utilized in electronic device like light emitting diodes.

Notes

Acknowledgements

CM acknowledges support from Dr. Renu Vig, Director, UIET for providing the lab facilities needed to carry out the research work. CM also acknowledges the SAIF department, Panjab University for the TEM, FTIR, Mass spectroscopy facilities provided and CNSNT department, Panjab University for sample nanofabrication facility and Photophysical studies. CM also acknowledges support from IIT Ropar, for providing DLS, SEM and EDX facility.

Author contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10854_2018_8776_MOESM1_ESM.doc (1.5 mb)
Supplementary material 1 (DOC 1559 KB)

References

  1. 1.
    R.J. Tseng, J. Ouyang, C.W. Chu, J. Huang, Y. Yang, Appl. Phys. Lett. 88, 123506 (2006)CrossRefGoogle Scholar
  2. 2.
    P. Uthirakumar, Y.S. Lee, E.K. Suh, C.H. Hong, J. Lumin. 128, 287–296 (2008)CrossRefGoogle Scholar
  3. 3.
    W.J.E. Beek, M.M. Wienk, R.A. Janssen, J. Adv. Mater. 16, 1009–1013 (2004)CrossRefGoogle Scholar
  4. 4.
    G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, L. Colombo, Nat. Nanotechnol. 9, 768–779 (2014)CrossRefGoogle Scholar
  5. 5.
    D. Bera, L. Qian, T.K. Tseng, P.H. Holloway, Materials 3, 2260–2345 (2010)CrossRefGoogle Scholar
  6. 6.
    P.V. Kamat, J. Phys. Chem. C 112(48), 18737–18753 (2008)CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, T.R. Nayak, H. Hong, W. Cai, Curr. Mol. Med. 13(10), 1633–1645 (2013)CrossRefGoogle Scholar
  8. 8.
    T.W. Prow, J.E. Grice, L.L. Lin, R. Faye, W. Butler, E.M.T. Wurm, C. Yoong, T.A. Robertson, H.P. Soyer, M.S. Roberts, Adv. Drug Deliv. Rev. 63(6), 470–491 (2011)CrossRefGoogle Scholar
  9. 9.
    A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2012)CrossRefGoogle Scholar
  10. 10.
    K. Okazaki, K. Kubo, T. Shimogaki, D. Nakamura, M. Higashihata, T. Okada, Adv. Mater. Lett. 2(5), 354–357 (2011)CrossRefGoogle Scholar
  11. 11.
    Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, Adv. Mater. 21, 4087–4108 (2009)CrossRefGoogle Scholar
  12. 12.
    M.A. Abbasi, H.I. Zafar, H. Mushtaque, O. Nur, M. Willander, Nanoscale Res. Lett. 8(320), 1–6 (2013)Google Scholar
  13. 13.
    N. Mandzy, E. Grulke, T. Druffel, Powder Technol. 160, 121–126 (2005)CrossRefGoogle Scholar
  14. 14.
    P.K. Giri, S. Bhattacharyya, B. Chetia, S. Kumari, D.K. Singh, P.K. Iyer, J. Nanosci. Nanotechnol. 11, 1–6 (2011)CrossRefGoogle Scholar
  15. 15.
    N. Goswami, D.K. Sharma, Physica E 42(5), 1675–1682 (2010)CrossRefGoogle Scholar
  16. 16.
    A.B. Lavand, Y.S. Malghe, J. Saudi Chem. Soc. 19, 471–478 (2015)CrossRefGoogle Scholar
  17. 17.
    Y. Cui, X. Shao, S. Prada, L. Giordano, G. Pacchiono, H.-J. Freund, N. Nilius, Phys. Chem. Chem. Phys. 16, 12764 (2014)CrossRefGoogle Scholar
  18. 18.
    R.M. Hewlett, M.A. McLachlan, Adv. Mater. 28, 3893–3921 (2016)CrossRefGoogle Scholar
  19. 19.
    A.M. Atta, H.A. Al-Lohedan, S.A. Al-Hussain, Molecules 19, 11263–11278 (2014)CrossRefGoogle Scholar
  20. 20.
    W. Wu, Q. He, C. Jiang, Nanoscale Res. Lett. 3(11), 397–415 (2008)CrossRefGoogle Scholar
  21. 21.
    K. Kobayashi, J. Wei, R. Iida, K. Ijiro, K. Niikura, Polym. J. 46, 460–468 (2014)CrossRefGoogle Scholar
  22. 22.
    K. Kim, H.B. Lee, J.W. Lee, H.K. Park, K.S. Shin, Langmuir 24, 7178–7183 (2008)CrossRefGoogle Scholar
  23. 23.
    U. Periyayya, J.H. Kang, J.H. Ryu, C.H. Hong, Vacuum 86, 254–260 (2011)CrossRefGoogle Scholar
  24. 24.
    C. Narula, I. Kaur, N. Kaur, J. Mater. Sci.: Mater. Electron. 26, 791–800 (2015)Google Scholar
  25. 25.
    S. Kaur, A. Kaur, N. Kaur, Mater. Lett. 100, 19–22 (2013)CrossRefGoogle Scholar
  26. 26.
    H. Sharma, K. Narang, N. Singh, N. Kaur, Mater. Lett. 84, 104–106 (2012)CrossRefGoogle Scholar
  27. 27.
    C. Madhu, I. Kaur, N. Kaur, J. Mater. Sci.: Mater. Electron. 28, 6388–6398 (2017)Google Scholar
  28. 28.
    H. Duan, D. Wang, Y. Li, Chem. Soc. Rev.. 44, 5778 (2015)CrossRefGoogle Scholar
  29. 29.
    M. Rycenga, C.M. Cobley, J. Zeng, W. Li, C.H. Moran, Q. Zhang, D. Qin, Y. Xia, Chem Rev. 111(6), 3669–3712 (2011)CrossRefGoogle Scholar
  30. 30.
    H. Sharma, N. Kaur, T. Pandiyan, N. Singh, Sens. Actuators B 166–167, 467–472 (2012)CrossRefGoogle Scholar
  31. 31.
    S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J.S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J.C. Grossman, J. Wu, Sci. Rep. 3, 2657 (2013).  https://doi.org/10.1038/srep02657 CrossRefGoogle Scholar
  32. 32.
    S. Xu, Z.L. Wang, Nano Res. (2011).  https://doi.org/10.1007/s12274-011-0160-7 Google Scholar
  33. 33.
    W. Zhu, S. Kitamura, M. Boffelli, E. Marin, E.D. Gaspera, M. Sturaro, A. Martucci, G. Pezzotti, Phys. Chem. Chem. Phys. 18, 9586 (2016)CrossRefGoogle Scholar
  34. 34.
    A.-T.T. Do, H.T. Giang, T.T. Do, N.Q. Pham, G.T. Ho, Beilstein J. Nanotechnol. 5, 1261–1267 (2014)CrossRefGoogle Scholar
  35. 35.
    A.V. Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Phys. Chem. B 104, 1715–1723 (2000)CrossRefGoogle Scholar
  36. 36.
    J.R. Sadaf, M.Q. Israr, S. Kishwar, O. Nur, M. Willander, Nanoscale Res Lett. 5, 957–960 (2010)CrossRefGoogle Scholar
  37. 37.
    S.B. Rana, A. Singh, N. Kaur, J. Mater. Sci.: Mater. Electron. 24, 44–52 (2013)Google Scholar
  38. 38.
    A. Saini, J. Singh, R. Kaur, N. Singh, N. Kaur, New J. Chem. 38, 4580–4586 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University Institute of Engineering and Technology (UIET)Panjab UniversityChandigarhIndia
  2. 2.Biomolecular Electronics and Nanotechnology Division (BEND)Central Scientific Instruments Organization (CSIO)ChandigarhIndia
  3. 3.Department of ChemistryPanjab UniversityChandigarhIndia

Personalised recommendations